Application of Edge-based Smoothed Finite Element Method to Large-scale Electrodeposition Simulation for Automobile Manufacturing Lines

Yuki ONISHI Tokyo Tech. (Japan)

What is Electrodeposition (ED) ?

<u>Outline</u>

- Most widely-used anti-rust basecoat methods for various metal products including carbodies.
- Depositing coating film by applying direct electric current in a paint pool.
- Relatively good at depositing a uniform film on bodies in complex shape.

Paint

What is Electrodeposition (ED)?

Photos of ED Process Line

https://blog.mazda.com/archive/20160413_01.html

Difficulty in ED for Carbodies

- Undercarriages are exposed to severe corrosive environments, especially due to seawater or snow-melting chemicals.
- Some undercarriage parts (such as a side sill) have bag-like complex structures with many ED holes.
- It is not easy to deposit a required minimal thick film at the innermost faces of a bag-like structure, even for ED.
 - Carbody design must consider the difficulty in ED process.

What is ED Simulation?

Actual ED Line

Paint Pool
 Carbody with Motion
 Electrodes (Anodes)
 are reproduced in a computer.

What is ED Simulation?

Time: 135.0 (s)

Governing Equation:

Electrostatic Laplace equation ($\nabla^2 \phi = 0$) in the paint pool domain.

- Boundary Condition (BC):
 - 1. Insulation BC,
 - 2. Anodic (electrode surface) BC,
 - Cathodic (carbody surface) BC: Film resistance/growth constitutive model.

- Outputs:
 - 1. Surface potential,
 - 2. Current density,
 - Coated film thickness. (main result)

Issue 1

Issue 1: Impossible to make a good HEX mesh

for carbodies.

Sliced view of a carbody mesh

- An ED simulation requires a mesh for the space around the carbody, just like CFD.
- In contrast to CFD, an ED mesh includes the room space and many narrow spaces among plates (such as side sills).

P. 7 WCCM2022

Issue 1 (cont.)

- The shape of a carbody is too complex to be discretized into a good HEX mesh.
- The Cartesian meshing (cutcell or snappy HEX meshing) is basically not suitable for the geometry with many holes.
 (: Massive increase in DOF, Linear mesh convergence rate, Presence of hanging nodes or polyhedral cells, Inapplicable to solid dynamics, etc.)

TET meshes are preferable in ED simulation.

WCCM2022

Tokyo Tech

Issue 2

Issue 2: Both the standard 4-node and 10-node tetrahedral elements are inconvenient for carbodies.

- ➢ 4-node TET (T4) has poor accuracy with only a linear mesh convergence rate.
 ⇒ FEM-T4 and FVM-T4 require very fine meshes to obtain accurate results.
- 10-node TET (T10) has good accuracy with a quadratic mesh convergence rate; however, T10 mesh requires massively large DOF to represent complex shapes without any kink of element shapes.

Issue 2 (cont.)

For example, if there is a small **hole** on a carbody, the surface mesh around the hole looks like...

- **X** T10 w/ kink leads to severe accuracy loss.
- **X** T10 w/o kink leads to a massive increase in DOF.

The standard T4 and T10 elements are both inconvenient for carbodies to achieve accurate simulation with minimal DOF.

Motivation

By the way, ...

- The smoothed finite element method (S-FEM) has become popular in recent years as a next-generation high-performance FEM.
- Especially, the edge-based S-FEM using T4 mesh (ES-FEM-T4) is known to achieve a superlinear mesh convergence rate even with T4 meshes.

Therefore, we expect that...

ES-FEM-T4 could be a solution for the meshing issues to achieve fast and accurate ED simulation.

Development of ED simulator using ES-FEM-T4 for large-scale ED simulations of actual manufacturing lines.

Table of body contents:

- 1. Brief of ED Formulation using ES-FEM-T4
- 2. Benchmark Analyses
- 3. Summary

Brief of ED Formulation using ES-FEM-T4

Brief Formulation of ES-FEM

Let us consider two 3-node triangular (T3) elements in 2D.

- Calculate [B] (= dN/dx) at each element as usual.
- Distribute [B] to each connecting edge with an area weight and build [Edge B].
- Calculate current density (J) and nodal internal current {i^{int}} in each edge smoothing domain.

Characteristics of ES-FEM-T4

<u>Advantage</u>

- Superlinear mesh convergence (as fast as 2nd-order elems.).
- Same input file as FEM-T4.
- No increase in DOF (nodal potentials only; ∴ easy to code).

<u>Disadvantage</u>

• Longer assembling time of [K] (~x2 of FEM-T4 w/ the same mesh).

WCCM2022

- Wider bandwidth of [K] (~x3 of FEM-T4 w/ the same mesh).
- No longer an independent T4 element.

A node is referred by 6 elements, \Rightarrow 7 nodes.

Tokyo Institute of Technology

A node is referred by 12 edges, \Rightarrow 12 elements, \Rightarrow 13 nodes.

Handling of Moving Boundary

- Each interfacial node of the active pool elements is tied in the active body elements with the multi-point constraint (**MPC**).
- The classical method of Lagrange multiplier is used to satisfy the MPCs.

P. 16 WCCM2022

Parallelization of ES-FEM-T4

- There is no particular difference from FEM-T4 using MPI.
- The only difference is the number of overlapping nodes, which leads to a slight increase in communication cost.
- Calculation steps:
 - 1. Generating T4 mesh for pool and body domains.
 - 2. Partitioning and reordering each mesh with METIS.

Pool mesh partitioning

- 3. Preparing an input file containing the mesh filenames, Body mesh partitioning boundary conditions, motion path, etc..
- 4. Executing the program. (e.g., in case of OpenMPI: orterun -np N -bind-to socket -npersocket 1

-x OMP_NUM_THREADS=8 -x numactl -l edesfem.bin input_file_name)

Tokyo Tech

There is no difficulty in parallelization of ES-FEM-T4.

WCCM2022

Benchmark Analyses

Imitating a bag-like structure such as a side sill in a carbody.

- Film thickness on the innermost surface (Face G) is the most important so as to guarantee corrosion protection.
- The film thickness is evaluated with 4 different meshes for mesh validation using FEM-T4 and ES-FEM-T4.

P. 19 WCCM2022

Overview of Meshes

3.2 mm Mesh Seed Size (31k T4 elem.)

Film Thickness on Face G (innermost surface)

Tokyo Institute of Technology

Comparison of Mesh Convergence Rate on Face G

Comparison of Calculation Time

on a PC (only 1 CPU: Intel i9-9960X)

Mesh Size	FEM-T4	ES-FEM-T4
3.2 mm	7 s	10 s
1.6 mm	8 s	2 3 14 s
0.8 mm	12 s	ي 26 s
0.4 mm	41 s	125 s

- With the same mesh, ES-FEM is slower than FEM by x2.
 - For the same accuracy, ES-FEM is faster than FEM by x4.

ES-FEM-T4 is supremely efficient in comparison to FEM-T4.

<u>Outline</u>

- Half-body analysis (only right-hand side).
- Entire line shape, carbody motion, and electrode conditions are faithfully reproduced.
- About 1000 timesteps for 300 s (i.e., average $\Delta t = 0.3$ s).
- The film thickness is evaluated with 3 different meshes for mesh validation using FEM-T4 and ES-FEM-T4.

Overview of Surface Mesh of 10M Element Mesh

There are many ED holes around narrow spaces among plates.

Overview of Surface Mesh of 16M Element Mesh

There are many ED holes around narrow spaces among plates.

Overview of Surface Mesh of <u>51M</u> Element Mesh

Let's zoom in here.

There are many ED holes around narrow spaces among plates.

The difference in the mesh can be seen clearly by zooming in around a hole.

Zoom in View around a Hole on Carbody

- There are many ED holes around narrow spaces among plates.
- The difference in the mesh can be seen clearly by zooming in around a hole.

Tokyo Institute of Technology

Animation of Film Thickness (ES-FEM with 51M Elems.)

WCCM2022

Film Thickness Distribution with **51M** Elem. Mesh

FEM shows a little thicker result. (The center of the side sill is Yellow.)

- **Reference Solution**
- The ES-FEM result is regarded as a reference solution. (The center of the side sill is Green.)

Film Thickness Distribution with 16M Elem. Mesh

- FEM shows a much thicker result. (The center of the side sill is Orange.)
- ES-FEM shows a similar result.
 (The center of the side sill is Green.)

Film Thickness Distribution with 10M Elem. Mesh

FEM shows a massively thicker result. (The center of the side sill is Red.)

ES-FEM shows a little thicker result.
 (The center of the side sill is Yellow.)

Let's compare the time history of film thickness at a certain point.

Tokvo Institute of Technology

Comparison of Time-histories of Film Thickness

- FEM-T4 with 51M elems. and ES-FEM-T4 with 10M elems. has almost comparable accuracy.
- ES-FEM-T4 with 16M elems. almost gets a converged result.

P. 33

WCCM2022

Tokyo Tech

Comparison of Calculation Time

On a cluster (TSUBAME3.0: Intel Xeon E5-2680 v4, using 64 CPUs)

# of Elements	FEM-T4	ES-FEM-T4
10M	1.6 h	≫_ 1.9 h
16M	2.3 h	3.4 h
51M	6.0 h Cr	8.5 h

- With the same mesh, ES-FEM is slower than FEM by x1.5.
- For the same accuracy, ES-FEM is faster than FEM by x3.

For the accurate simulations of actual ED lines, ES-FEM-T4 is much better than FEM-T4.

Strong Scaling Test (with 10M Elem. Mesh)

Our ES-FEM code scales to some extent up to 64 CPUs at least.

 \because Some tasks, including MPCs for the moving boundary, are not yet fully parallelized (our future work).

Summary

Summary

<u>Conclusion</u>

- ES-FEM-T4 was applied to large-scale practical ED simulations.
- The high accuracy of ES-FEM-T4, owing to its superlinear (almost quadratic) mesh convergence rate in ED simulation, was confirmed compared to the poor accuracy of FEM-T4.
- Our parallelized ES-FEM-T4 code enabled us to obtain meshconverged accurate solutions of actual ED line simulations in reasonable time with relatively coarse meshes.
- Our code is already in use by automakers.

Summary

<u>Acknowledgment</u>

We appreciate the automakers below for supporting our project: SUZUKI Motor Corp., SUBARU Corp., MAZDA Motor Corp..

<u> Take-home Message</u>

Why don't you use ES-FEM-T4? It's supremely useful and easy to code!

Thank you for your kind attention.

