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Motivation

Motivation

We want to accurately and stably analyze severe large
deformation of solids in any shape with finite elements.

Issues

® Only tetra mesh is available for arbitrary body shape.

® The standard 1st/ 2nd order tetrahedral element are poor
especially when IS present. Also, all the
other advanced tetrahedral elements (e.g., C3D4H,
C3D10H, C3D10MH in ABAQUS) have some Issues:
¢ shear/volumetric locking,
& pressure oscillation, etc.

Researches on FE formulations for 1t order tetra (T4) are
still active especially for rubber-like or elasto-plastic materials.
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An Example for Rubber-like Material

Material: neo-Hookean hyperelastic, v;,; = 0.49

+1.000e+10 +1.000e+10
+8.917e+09 +8.917e+09
+7.833e+09 +7.833e+09
+6.750e+09 +6.750e+09
+5.667e+09 +5.667e+09
+4.583e+09 +4.583e+09
+3.500e+09 +3.500e+09
+2.417e+09 +2.417e+09
+1.333e+09 +1.333e+09
+2.500e+08 +2.500e+08
-8.333e+08 -8.333e+08

-1.917e+09 -1.917e+09

-3.000e+09 -3.000e+09

# of Nodes is
almost the same.

15t order hybrid T4 (C3D4H) 2"d order modified hybrid T10 (C3D10MH)
v" No shear/volumetric locking v* No shear/volumetric locking

X Pressure oscillation X Low interpolation accuracy

X Corner locking X Early convergence failure
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An Example for Rubber-like Material

Material: neo-Hookean hyperelastic, v;,; = 0.49

Pressure
I 1.000e+10

—-6.8e+9

I3.5e+9

I2.5e+8
-3.000e+09

# of Nodes is
exactly the same
as the C3D4H case.
Note:
F-barES-FEM-T4
IS a pure
displacement-based
formulation.

F-barES-FEM-T4 (a new type of smoothed finite element method (S-FEM))

v No shear/ volumetr_lc chklng F-barES-FEM-T4 has excellent accuracy
v’ Less pressure oscillation on rubber-like materials.
v’ Less corner locking How about it on elasto-plastic materials?
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Objective

Apply the new type of S-FEM,
F-barES-FEM-T4,

to large deformation problems
of elasto-plastic materials.

Note: Elasto-plastic materials may have near incompressibility after yielding.

Table of Body Contents

> Methods: Quick introduction of F-barES-FEM-T4
> Results: A few example analyses
> Summary
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Methods

Quick introduction of F-barES-FEM-T4
(F-barES-FEM-T3 In 2D is explained for simplicity.)
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Quick Review of Node-based S-FEM (NS-FEM)

For triangular (T3)
or tetrahedral (T4)
elements.

Algorithm:

1. Calculate the deformation gradient at each element, Bl¢mF,
as usual.

2. Distribute "'*™F s to the connecting nodes
with area weights to make N°9eF at each node.

3. Use NodeF s tg calculate the stress, nodal force and so on.

NS-FEM avoids shear & volumetric locking in T3/T4 elements
and also alleviates pressure oscillation.
Yet, it suffers from spurious low-energy modes,
corner locking and minor pressure oscillation....
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Quick Review of Edge-based S-FEM (ES-FEM)

For triangular (T3)
or tetrahedral (T4)
elements.

Algorithm:

1. Calculate the deformation gradient at each element, ™M F,
as usual.

2. Distribute "'*™F s to the connecting edges
with area weights to make F98¢F at each edge.

3. Use Ed8¢F s to calculate the stress, nodal force and so on.

ES-FEM avoids shear locking in T3/T4 elements.
Yet, it suffers from volumetric locking, corner locking,
and major pressure oscillation...

WCCM2016
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Quick Introduction of F-barES-FEM

Concept: combine ES-FEM and NS-FEM using F-bar method
Qutlline

Use Use
2 adjacent some neighbo
elements to elements to ~-¢

calculate calculate
FiSO T

N/
F

m EdeeFiso s given by ES-FEM.

B Edge ] s given by cyclically applied NS-FEM.

m FdgeF is calculated in the manner of F-bar method:
Edgef — Edge71/3 Edgeﬁiso_
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Outline of F-barES-FEM

Brief Formulation |
A kind of
1. Calculate E'*™] as usual. ow-pass fier
or J
2. Smooth E'*M] at nodes and get Node T -
- - yclic
3. Smooth Node T at elements and get Fle™ T . Smoothing
. of J
4. Repeat 2. and 3. as necessary (c times).
i (c layers of ~) B
5. Smooth El*M 7 at edges to make Edge ]

Combine EdgeT and EdgeFiso of ES-FEM as
EdgeF Edge ]1/3 EdgeFlso

Hereafter, F-barES-FEM-T4 with ¢ cycles of smoothing
Is called “F-barES-FEM-T4(c)".
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Results
A few example analyses
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_Bending of Elasto-Plastic Spanner

Outlhine 8.5 k nodes & 33 k elems. y

4 .-i>leed

———

Elasto-plastic material:
® Hencky elasticity with E = 70 GPa and v = 0.3.
® |sotropic von Mises yield criterion with

Pressure  ;_ 100 MPaand H = 7 GPa (constant).

W 2 faces are perfectly constrained.
B Pressure is applied to a side part of the spanner.

B Compared to ABAQUS C3D4H with the same
unstructured T4 mesh.
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Bending of Elasto-Plastic Spanner
Equivalent Plastic Strain

F-barES-FEM-T4

Equivalent_Plastic_Strain

0.011 1.2e-02

!

0.0e+00 0.0035 0.007
D R S A B

.

ABAQUS C3D4H

PEEQ
+1.214e-02
+1.113e-02
+1.012e-02
+9.107e-03
+8.095e-03
o 16:6716.03
Distributions of e
+3.036e-03

equivalent plastic strain S
are about the same.
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Bending of Elasto-Plastic S

Pressure

panner

F-barES-FEM-T4

Pressure

-5.9e+07 -3e+7 5.9e+07

3e+7
(NN JIJI

ns here

d pa’t\ef
ABAQUS C3D4H cneckero?"

S, Pressure

+7.684e+07
+5.900e+07
+4.,917e+07
+3.933e+07
+2.950e+07
+1.967e+07
+9.833e+06
-6.000e+08
-9.833e+06

67e+07

ABAQUS C3D4H suffers from pressure oscillation 35k
even in a small deformation elasto-plastic case.
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Shearing & Tensioning of Elasto-Plastic Bar

1.2 k nodes & 4.8 k elems.

Qutline

| Enforced
TN 7D|splacement

2m

“A'm

Elasto-plastic material:
® Hencky elasticity with E = 1 GPa and v = 0.3.
® |sotropic von Mises yield criterion with

oy = 1 MPaand H = 0.1 GPa (constant).

M Blue face is perfectly constrained.
B Red face Is constrained in plane and pressed down.

B Compared to ABAQUS C3D4H with the same
unstructured T4 mesh.
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Shearing & Tensioning of Elasto-Plastic Bar

Result Equivalent_Plastic_Strain

of F-bar E] .9e+00

ES-FEM 1.5

(Equiv.

Plastic E ]

Straiin) 0.5
EO.Oe+OO

WCCM2016

P. 16




Shearing & Tensioning of Elasto-Plastic Bar

Equivalent Plastic Strain

Equivalent_Plastic_Strain
I4.7689-O1

-0.3576

102384
0.1192

IO.OOOe+OO

++++++++++

‘Equivalent_Plastic_Strain
I 1.137e+00

-0.8524
+0.5683

IO.2841
0.000e+00

ABAQUS C3D4H

F-barES-FEM-T4
e [ EEAS WCCM2016
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Shearing & Tensioning of Elasto-Plastic Bar
Equivalent Plastic Strain

PEEQ
+2.605e+00
+2.3B8e+00
+2.170e+00
+1.953e+00
+1.7306e+00
+1.519+00
+1,302e+00
+1.085e+00
+8.682e-01
+6.511e-01
+4.341e-01
+2.170e-01

+0.000e+00

Equivalent_Plastic_Strain
I2.6OSe+OO

-1.9534

- 1.3023
0.6511

IO.OOOe+OO

u, = 2.0m

F-barES-FEM-T4 ABAQUS C3D4H

Accuracy of equivalent plastic strain seems
no much different.
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Shearing & Tensioning of Elasto-Plastic Bar
Pressure

Pressure
3.233e+07

-2.3e+7

[ 1.de+7
4.9e+6

I;42éde+06

Pressure
0 4.736e+07

-3e+7
15047

+1.746e+07
+1.248e+07
+7.500e+

-2.465e+H

-7.443e10b
-1.243e407
-3.048e+07

IO
-1.243e+07

F-barES-FEM-T4

B 2L WCCM2016
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Shearing & Tensioning of Elasto-Plastic Bar

Pressure S, Pressure
+1,254e+68
4.603e+07 +4.683e+07
I +3.850e+07
+3.096e+07
+2.343e+687
-2.3e+7 +1.598e+67

'3 683e+07
-1.436e:167
-7.29%+87

0
-2.3e+7
-4.436e+07

u, =2.0m

F-barES-FEM-T4 ABAQUS C3D4H

Accuracy of pressure is quite different
due to the pressure oscillation of ABAQUS C3D4H.
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Twist of Rubber/Aluminium Composite Plate
Qutline Enf(_)rced Twisting 3 k nodes & 14 k elems.

Displacemen @
) ..;.;.:.:..:.;.5.51'1;:555555 .
BB HHNN N o [Aluminium]
EPEPEREN SEREREIE ERCRERENE ENDENEY DD . .
SIPP DI SISHIPAMPIS DU Henckyv elasticitv:
[Rubber] Aubber | £ et Al R 7y0 - 4
Neo-Hook i g — 03 ’
Hyperelasticity: Elbi i ot
S . asticity:
—_ O 49 EPEPEDEN SEPERENE ERCRERENE EIDENEY DEDEDENE p y
A o oy = 100 MPa,
______ BTN e B
Lddetdze  =p7om eonsy
3m ] -

B Bottom face is perfectly constrained.

B Top face is constrained in the plane
and twisted 360 deg. around the vertical axis.

B Calculated by F-barES-FEM-T4 only.

H I\/IuIt|Ie Fs at edges on the material interface.
WCCM2016
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Twist of Rubber/Aluminium Composite Plate

Result of
F-bar
ES-FEM-T4

Equivalent
Plastic
Strain

WCCM2016
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Equivalent_Plastic_Strain

/.8e-01
0.6

0.4

0.2
EO.Oe+00




Twist of Rubber/Aluminium Composite Plate

Result of Pressure (Pa)
9.0e+08
F-bar
ES-FEM-T4 rert
:4e+8
Pressure
0
-de+8
-5.9e+08
No
pressure
oscillation.
H E R WCCM2016 NE—— -
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Twist of Rubber/Aluminium Composite Plate

Result of Deformation_Gradient F_yz

F-bar 4.2e-01

ES-FEM-T4 _O 2

Deformation 0

Gradient

Fy, 0.2
-4.7e-01

Discontinuous F,, .
]
No strain smoothing
across
material interfaces.

= Fevy
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Summary
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Benefits and Drawbacks of F-barES-FEM-T4
Benefits
v" Locking-free with 15t order tetra meshes.

No difficulty in severe strain or contact analysis.

v No increase in DOF.
Purely displacement-based formulation.

v No restriction of material constitutive model.
Pressure dependent models are acceptable.

v’ Less corner locking and pressure oscillation.

Drawbacks

X The more cyclic smoothing necessitates
the more CPU time due to the wider bandwidth.
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FYI

If you are interested in F-barES-FEM-T4,
please refer to the following paper:

“F-bar aided edge-based smoothed finite element method using
tetrahedral elements for finite deformation analysis of nearly
Incompressible solids, International Journal for Numerical
Methods in Engineering (IJNME), Jul. 2016.

| Thank you for your kind attention!
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