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Motivation
Motivation

We want to accurately and stably analyze severe large 

deformation of solids in any shape with finite elements.

Issues

 Only tetra mesh is available for arbitrary body shape.

 The standard 1st / 2nd order tetrahedral element are poor

especially when incompressibility is present. Also, all the

other advanced tetrahedral elements (e.g., C3D4H,

C3D10H, C3D10MH in ABAQUS) have some issues:

 shear/volumetric locking,

 pressure oscillation, etc.
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Researches on FE formulations for 1st order tetra (T4) are 

still active especially for rubber-like or elasto-plastic materials.
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An Example for Rubber-like Material
Material: neo-Hookean hyperelastic, 𝜈ini = 0.49
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1st order hybrid T4 (C3D4H)

 No shear/volumetric locking

✗ Pressure oscillation

✗ Corner locking

2nd order modified hybrid T10 (C3D10MH)

 No shear/volumetric locking

✗ Low interpolation accuracy

✗ Early convergence failure

# of Nodes is 

almost the same.

Pressure Pressure
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An Example for Rubber-like Material
Material: neo-Hookean hyperelastic, 𝜈ini = 0.49
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F-barES-FEM-T4 (a new type of smoothed finite element method (S-FEM))

 No shear/volumetric locking

 Less pressure oscillation 

 Less corner locking

F-barES-FEM-T4 has excellent  accuracy

on rubber-like materials.

How about it on elasto-plastic materials?

# of Nodes is 

exactly the same

as the C3D4H case.

Note:

F-barES-FEM-T4

is a pure

displacement-based

formulation.
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Objective
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Apply the new type of S-FEM,

F-barES-FEM-T4,

to large deformation problems

of elasto-plastic materials.

Table of Body Contents

 Methods: Quick introduction of F-barES-FEM-T4

 Results: A few example analyses

 Summary

Note: Elasto-plastic materials may have near incompressibility after yielding. 
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Methods

Quick introduction of F-barES-FEM-T4

(F-barES-FEM-T3 in 2D is explained for simplicity.)
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Quick Review of Node-based S-FEM (NS-FEM)

Algorithm:

1. Calculate the deformation gradient at each element, Elem𝑭, 

as usual.

2. Distribute Elem𝑭 s to the connecting nodes 

with area weights to make Node෩𝑭 at each node.

3. Use Node෩𝑭 s to calculate the stress, nodal force and so on.
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NS-FEM avoids shear & volumetric locking in T3/T4 elements

and also alleviates pressure oscillation.

Yet, it suffers from spurious low-energy modes,

corner locking and minor pressure oscillation….

For triangular (T3)

or tetrahedral (T4)

elements.
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Quick Review of Edge-based S-FEM (ES-FEM)

Algorithm:

1. Calculate the deformation gradient at each element, Elem𝑭, 

as usual.

2. Distribute Elem𝑭 s to the connecting edges

with area weights to make Edge෩𝑭 at each edge.

3. Use Edge෩𝑭 s to calculate the stress, nodal force and so on.
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ES-FEM avoids shear locking in T3/T4 elements.

Yet, it suffers from volumetric locking, corner locking,

and major pressure oscillation…

For triangular (T3)

or tetrahedral (T4)

elements.
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Quick Introduction of F-barES-FEM
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Concept: combine ES-FEM and NS-FEM using F-bar method

Outlline


Edge෩𝑭iso is given by ES-FEM.


Edge ഥ𝐽 is given by cyclically applied NS-FEM.


Edge ഥ𝑭 is calculated in the manner of F-bar method:

Edge ഥ𝑭 = Edge ഥ𝐽 1/3 Edge෩𝑭iso.
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Outline of F-barES-FEM
Brief Formulation

1. Calculate Elem𝐽 as usual.

2. Smooth Elem𝐽 at nodes and get Node ෩𝐽 .

3. Smooth Node ෩𝐽 at elements and get Elem ෩𝐽 .

4. Repeat 2. and 3. as necessary (𝑐 times).

5. Smooth Elem
ሶሶሶ෩෩𝐽 at edges to make Edge ഥ𝐽 .

6. Combine Edge ഥ𝐽 and Edge𝑭iso of ES-FEM as
Edge ഥ𝑭 = Edge ഥ𝐽 1/3 Edge𝑭iso.
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Cyclic
Smoothing

of 𝐽

Hereafter, F-barES-FEM-T4 with 𝒄 cycles of smoothing 

is called “F-barES-FEM-T4(𝒄)”.

(𝑐 layers of ~)

A kind of

low-pass filter

for 𝐽
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Results

A few example analyses
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Bending of Elasto-Plastic Spanner
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Outline

 2 faces are perfectly constrained.

 Pressure is applied to a side part of the spanner.

 Compared to ABAQUS C3D4H with the same 

unstructured T4 mesh.

Fixed

Pressure

Elasto-plastic material:

 Hencky elasticity with 𝐸 = 70 GPa and 𝜈 = 0.3.

 Isotropic von Mises yield criterion with

𝜎Y = 100 MPa and 𝐻 = 7 GPa (constant).

8.5 k nodes & 33 k elems.
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Bending of Elasto-Plastic Spanner
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Equivalent Plastic Strain

Distributions of

equivalent plastic strain

are about the same.

ABAQUS C3D4H

F-barES-FEM-T4
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Bending of Elasto-Plastic Spanner
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F-barES-FEM-T4

Pressure

ABAQUS C3D4H

ABAQUS C3D4H suffers from pressure oscillation

even in a small deformation elasto-plastic case.
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Shearing & Tensioning of Elasto-Plastic Bar
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Outline

 Blue face is perfectly constrained.

 Red face is constrained in plane and pressed down. 

 Compared to ABAQUS C3D4H with the same 

unstructured T4 mesh.

Elasto-plastic material:

 Hencky elasticity with 𝐸 = 1 GPa and 𝜈 = 0.3.

 Isotropic von Mises yield criterion with

𝜎Y = 1 MPa and 𝐻 = 0.1 GPa (constant).

1.2 k nodes & 4.8 k elems.
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Shearing & Tensioning of Elasto-Plastic Bar
Result

of F-bar

ES-FEM

(Equiv.

Plastic 

Strain)
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Shearing & Tensioning of Elasto-Plastic Bar

P. 17P. 17

Equivalent Plastic Strain

F-barES-FEM-T4 ABAQUS C3D4H

𝑢𝑧 = 0.5 m

𝑢𝑧 = 1.0 m
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Shearing & Tensioning of Elasto-Plastic Bar
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Equivalent Plastic Strain

F-barES-FEM-T4 ABAQUS C3D4H

Accuracy of equivalent plastic strain seems 

no much different.

𝑢𝑧 = 2.0 m
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Shearing & Tensioning of Elasto-Plastic Bar
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Pressure

𝑢𝑧 = 0.5 m

𝑢𝑧 = 1.0 m

F-barES-FEM-T4 ABAQUS C3D4H
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Shearing & Tensioning of Elasto-Plastic Bar
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Pressure

𝑢𝑧 = 2.0 m

Accuracy of pressure is quite different 

due to the pressure oscillation of ABAQUS C3D4H.

F-barES-FEM-T4 ABAQUS C3D4H
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Twist of Rubber/Aluminium Composite Plate
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Outline

 Bottom face is perfectly constrained.

 Top face is constrained in the plane

and twisted 360 deg. around the vertical axis.

 Calculated by F-barES-FEM-T4 only.

 Multiple 𝐹s at edges on the material interface.

3 k nodes & 14 k elems.

[Aluminium]

Hencky elasticity:

𝐸 = 70 GPa，
𝜈 = 0.3.

Isotropic von Mises 

plasticity:

𝜎Y = 100 MPa ，
𝐻 = 0.7 GPa (const.),

(𝑐 = 2)

[Rubber]

Neo-Hook

Hyperelasticity:

𝐸ini = 5 MPa,
𝜈ini = 0.49,
(𝑐 = 1)
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Twist of Rubber/Aluminium Composite Plate
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Seems

valid.

Result of

F-bar

ES-FEM-T4

Equivalent

Plastic

Strain



WCCM2016

Twist of Rubber/Aluminium Composite Plate
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No

pressure

oscillation.

Result of

F-bar

ES-FEM-T4

Pressure
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Twist of Rubber/Aluminium Composite Plate
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Discontinuous 𝐹𝑦𝑧.

⇑
No strain smoothing

across 

material interfaces.

Result of

F-bar

ES-FEM-T4

Deformation

Gradient

𝑭𝒚𝒛
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Summary
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Benefits and Drawbacks of F-barES-FEM-T4

Benefits

 Locking-free with 1st order tetra meshes.

No difficulty in severe strain or contact analysis.

 No increase in DOF.

Purely displacement-based formulation.

 No restriction of material constitutive model.
Pressure dependent models are acceptable. 

 Less corner locking and pressure oscillation.

Drawbacks

✗ The more cyclic smoothing necessitates 

the more CPU time due to the wider bandwidth.
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FYI

If you are interested in F-barES-FEM-T4,

please refer to the following paper:

“F-bar aided edge-based smoothed finite element method using

tetrahedral elements for finite deformation analysis of nearly

incompressible solids, International Journal for Numerical

Methods in Engineering (IJNME), Jul. 2016.
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Thank you for your kind attention!


