Identification of Paint Resistance and Deposition Model Parameters for Electrodeposition Coating Simulation

<u>Ayaka SHIMURA</u>, Yuki ONISHI, Kenji AMAYA **Tokyo Institute of Technology (Japan)**

What is electrodeposition (ED) ?

One of the popular basecoat method for car bodies.

- Making coated film by passing a direct electric current.
- Coated film has a certain electrical resistance, and thus
- Electric current tends to flow on to thinner film areas.

ED is good at making coated objects with an uniform film thickness.

Photos of ED process line

1. dipping and deposition process

2. water rinse process

WCCM2016

P. 3

We focus on this.

Electric current generates OH⁻ and H₂ from H₂O on the cathode surface.

2 Paint particle ions having positive (+) charge are attracted to OH⁻ toward the cathode.

Outline of ED mechanism

③ Some of the paint particle ions are neutralized and stick on the cathode surface, becoming a paint film.

- ④ The rest of the paint particles are diffused and resolved again as ions.
- (5) The paint film soon has a number of holes to let the next OH⁻ and H₂ go through.

2 Complexities in ED phenomena

1. The electric resistance of the paint film is not linear with respect to the film thickness...

 $R \neq \alpha h$ Due to a number of holes

R: resistance, α : const., *h*: film thickness.

2. The growth rate of the paint film is not linear with respect to the current density...

 $\dot{h} \neq \beta j$

Due to the diffusive current

 \dot{h} : film growth rate, β : const., j: current density.

(These complexities in experiments are shown later in this talk.)

Experimental ED process optimization costs high! \Rightarrow Numerical ED simulation is important.

Objective

Identify the two fundamental ED models,
1. a nonlinear film resistance model and
2. a nonlinear film growth model, via basic ED experiments
for accurate numerical ED simulation.

Table of body contents:

- Basic ED experiments
- Our new models
- Validation results
- Summary

Basic ED Experiments

WCCM2016 P. 10

Outline of the one-plate test

 Use a rectangular steel plate instead of a car body.
 Use a SS pot instead of the paint pool and anode electrodes.

Outline of the one-plate test

- Dip a steel plate into the paint pot.
- Apply voltage up to 250 V between the plate and pot.
- Measure time-histories of
 - applied voltage,
 - current,
 - film thickness.

An example of film resistance nonlinearity

In the middle of an ED test, we changed the applied voltage quickly from 100 V to 30 V. Then, the film resistance before/after the change was estimated.

The film thickness is same, but the resistance changes quickly.

The film resistance should be modeled with a polarization curve depending on film thickness.

WCCM2016 P. 13

An example of film growth nonlinearity

Relation between total charge density and film thickness.

The film growth model should include the effect of the diffusive current depending on the voltage and film thickness.

Our new models

Procedure to identify resistance model

Procedure to identify film growth model

Validation Results

WCCM2016 P. 18

Our ED simulator

In-house finite element code. 2nd order tetrahedral elements.

The **experimental** results of the one-plate tests are compared to the results of our simulator with the **proposed nonlinear models** and those with the **conventional linear models**.

Time history of film thickness

- Conventional linear models fail to represent the experimental data...
- Our new nonlinear models succeeded in reproducing the experiments!

WCCM2016 P. 20

- Conventional linear models fail to represent the experimental data...
- Our new nonlinear models succeeded in reproducing the experiments!

Time, t(s)

WCCM2016 P. 21

Time, *t* (s)

Summary

- A new nonlinear film resistance model and film growth model for accurate electrodeposition (ED) simulation were proposed.
- The model parameters were identified via the oneplate ED tests.
- Our new models improved the accuracy in time histories of the film thickness and current density compared to the conventional linear models.

Thank you for your kind attention.

