Performance of Smoothed Finite Element Methods with Tetrahedral Elements in Large Deformation Elasto-Plastic Analysis

Yuki ONISHI Tokyo Institute of Technology, Japan

Motivation

<u>Motivation</u>

We want to accurately and stably analyze **severe large deformation** of solids in **any shape** with finite elements.

<u>Issues</u>

- Severe large deformation of arbitrary body
 ⇒ No Hex mesh. Only Tet mesh.
- 1st order standard tetrahedral (constant strain) element (e.g. C3D4 in ABAQUS) for materials with incompressibility ⇒ Shear/volumetric locking and pressure oscillation.
- 2nd order u/p hybrid tetrahedral element (e.g., C3D10H, C3D10MH in ABAQUS)
 - \Rightarrow Low accuracy in severe large deformation.

Convergence difficulty in contact.

Researches on FE formulations for 1st order tetra (T4) are still active especially for rubber-like or elasto-plastic materials.

F-barES-FEM-T4 (a new type of smoothed finite element method (S-FEM))

- ✓ No shear/volumetric locking
- Less pressure oscillation
- Less corner locking

F-barES-FEM-T4 has excellent accuracy on rubber-like materials. How about it on elasto-plastic materials?

Objective

Apply the new type of S-FEM, F-barES-FEM-T4, to large deformation problems of elasto-plastic materials.

Table of Body Contents

- Methods: Quick introduction of F-barES-FEM-T4
- Results: A few verification analyses
- Summary

<u>Methods</u>

Quick introduction of F-barES-FEM-T4

(F-barES-FEM-T3 in 2D is explained for simplicity.)

What is S-FEM?

S-FEM: Smoothed Finite Element Method

- A new sort of *strain smoothing* technique (since 2007).
- Strain is smoothed across elements.
- Various types of S-FEMs:
 - Basic types
 - >Node-based S-FEM (NS-FEM) X
 - > Face-based S-FEM (FS-FEM)
 - >Edge-based S-FEM (ES-FEM)
 - <u>Selective types</u> (e.g. ES/NS-FEM)
 - Bubble types (e.g. bES-FEM)
 - <u>F-bar type</u> (e.g. F-barES-FEM)

 Spurious zero-energy mode or Volumetric locking, Pressure oscillation, Corner locking.

Good in hyperelastic case.Unknown in elasto-plastic case.

Quick Review of NS-FEM

For triangular (T3) or tetrahedral (T4) elements.

<u>Algorithm:</u>

- 1. Calculate the deformation gradient *F* at each element as usual.
- 2. Distribute the deformation gradient F to the connecting nodes with area weights to make $\frac{\text{Node}\widetilde{F}}{\widetilde{F}}$ at each node.
- 3. Use $\operatorname{Node} \widetilde{F}$ to calculate the stress, nodal force and so on.

NS-FEM avoids shear/volumetric locking in T3/T4 elements. Yet, it suffers from zero-energy modes, pressure oscillation and corner locking...

Quick Review of ES-FEM

For triangular (T3) or tetrahedral (T4) elements.

<u>Algorithm:</u>

- 1. Calculate the deformation gradient *F* at each element as usual.
- 2. Distribute the deformation gradient F to the connecting edges with area weights to make $E^{dge}\tilde{F}$ at each edge.
- 3. Use $E^{dge}\tilde{F}$ to calculate the stress, nodal force and so on.

ES-FEM avoids shear locking in T3/T4 elements. Yet, it suffers from volumetric locking, pressure oscillation and corner locking...

Quick Introduction of F-barES-FEM

Concept: combination of F-bar method and ES-FEM

- $\mathbf{E}^{\text{Edge}}\widetilde{\mathbf{F}}^{\text{iso}}$ is given by ES-FEM.
- $E^{dge}\overline{J}$ is given by cyclic nodal smoothing.
- $E^{dge}\overline{F}$ is calculated in the manner of F-bar method: $E^{dge}\overline{F} = E^{dge}\overline{I}^{1/3} E^{dge}\overline{F}^{iso}$.

<u>Results</u>

A few verification analyses

Plasticity2016 P. 11 ____

Bending of Elasto-Plastic Spanner

<u>Outline</u>

8.5 k nodes & 33 k elems.

Elasto-plastic material:

- Hencky elasticity with E = 70 GPa and v = 0.3.
- Isotropic von Mises yield criterion with
 - $\sigma_{\rm Y} = 100$ MPa and H = 7 GPa (constant).
- 2 faces are perfectly constrained.

Pressure

- Pressure is applied to a side part of the spanner.
- Compared to ABAQUS C3D4H with the same unstructured T4 mesh.

Plasticity2016 P. 12

Fixed

Bending of Elasto-Plastic Spanner

Tokyo Institute of Technology

P. 14

Pursuing Excellence

Elasto-plastic material:

- Hencky elasticity with E = 1 GPa and v = 0.3.
- Isotropic von Mises yield criterion with $\sigma_{\rm Y} = 1$ MPa and H = 0.1 GPa (constant).
- Blue face is perfectly constrained.
- Red face is constrained in plane and pressed down.
- Compared to ABAQUS C3D4H with the same unstructured T4 mesh.

<u>Result</u> <u>of F-bar</u> <u>ES-FEM</u> <u>(Equiv.</u> <u>Plastic</u> <u>Strain)</u>

ΤΟΚ

YD TECH

Pursuina Excellence

Equivalent Plastic Strain

Equivalent Plastic Strain

Accuracy of equivalent plastic strain seems no much different.

Accuracy of pressure is quite different due to the pressure oscillation of ABAQUS C3D4H.

<u>Summary</u>

Benefits and Drawbacks of F-barES-FEM-T4

<u>Benefits</u>

✓ Locking-free with 1st -order tetra meshes.

No difficulty in severe strain or contact analysis.

✓ No increase in DOF.

No intermediate nodes. No need for static condensation.

- No restriction of material constitutive model.
 Pressure dependent models are acceptable.
- Less pressure oscillation and corner locking.

<u>Drawbacks</u>

X The more cyclic smoothing necessitates the more CPU time.

The Take-Home Message

If you are interested in elasto-plastic problems that have

- ♦ 3D bulk complex shapes,
- severe large deformation or contact, and especially
- pressure dependent constitutive models,

then, please consider using F-barES-FEM-T4.

Thank you for your kind attention!

