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Motivation
Motivation

We want to accurately and stably analyze severe large 

deformation of solids in any shape with finite elements.

Issues

 Severe large deformation of arbitrary body

⟹ No Hex mesh. Only Tet mesh.

 1st order standard tetrahedral (constant strain) element
(e.g. C3D4 in ABAQUS) for materials with incompressibility

⟹ Shear/volumetric locking and pressure oscillation.

 2nd order u/p hybrid tetrahedral element 
(e.g., C3D10H, C3D10MH in ABAQUS)

⟹ Low accuracy in severe large deformation.
Convergence difficulty in contact.
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Researches on FE formulations for 1st order tetra (T4) are 

still active especially for rubber-like or elasto-plastic materials.



Plasticity2016

An Example for Rubber-like Material
Material: neo-Hookean hyperelastic, 𝜈ini = 0.49
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1st order hybrid T4 (C3D4H)

 No shear/volumetric locking

✗ Pressure oscillation

✗ Corner locking

2nd order modified hybrid T10 (C3D10MH)

 No shear/volumetric locking

✗ Decrease in interpolation accuracy

✗ Early convergence failure

# of Nodes is 

almost the same.

Pressure Pressure
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An Example for Rubber-like Material
Material: neo-Hookean hyperelastic, 𝜈ini = 0.49
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F-barES-FEM-T4 (a new type of smoothed finite element method (S-FEM))

 No shear/volumetric locking

 Less pressure oscillation 

 Less corner locking

F-barES-FEM-T4 has excellent  accuracy

on rubber-like materials.

How about it on elasto-plastic materials?

# of Nodes is 

exactly the same

as the C3D4H case.
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Objective
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Apply the new type of S-FEM,

F-barES-FEM-T4,

to large deformation problems

of elasto-plastic materials.

Table of Body Contents

 Methods: Quick introduction of F-barES-FEM-T4

 Results: A few verification analyses

 Summary
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Methods

Quick introduction of F-barES-FEM-T4

(F-barES-FEM-T3 in 2D is explained for simplicity.)
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What is S-FEM?
S-FEM: Smoothed Finite Element Method

 A new sort of strain smoothing technique (since 2007).

 Strain is smoothed across elements.

 Various types of S-FEMs:

Basic types

Node-based S-FEM (NS-FEM)

Face-based S-FEM (FS-FEM)

Edge-based S-FEM (ES-FEM)

Selective types (e.g. ES/NS-FEM)

Bubble types (e.g. bES-FEM)

 F-bar type (e.g. F-barES-FEM)
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✗ Spurious zero-energy mode

or Volumetric locking,

Pressure oscillation,

Corner locking.

 Good in hyperelastic case.

? Unknown in elasto-plastic case.
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Quick Review of NS-FEM

Algorithm:

1. Calculate the deformation gradient 𝑭 at each element as 

usual.

2. Distribute the deformation gradient 𝑭 to the connecting 

nodes with area weights to make Node෩𝑭 at each node.

3. Use Node෩𝑭 to calculate the stress, nodal force and so on.
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NS-FEM avoids shear/volumetric locking in T3/T4 elements.

Yet, it suffers from zero-energy modes,

pressure oscillation and corner locking...

For triangular (T3)

or tetrahedral (T4)

elements.
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Quick Review of ES-FEM

Algorithm:

1. Calculate the deformation gradient 𝑭 at each element as 

usual.

2. Distribute the deformation gradient 𝑭 to the connecting 

edges with area weights to make Edge෩𝑭 at each edge.

3. Use Edge෩𝑭 to calculate the stress, nodal force and so on.
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ES-FEM avoids shear locking in T3/T4 elements.

Yet, it suffers from volumetric locking,

pressure oscillation and corner locking…

For triangular (T3)

or tetrahedral (T4)

elements.
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Quick Introduction of F-barES-FEM
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
Edge෩𝑭iso is given by ES-FEM.


Edge ഥ𝐽 is given by cyclic nodal smoothing.


Edge ഥ𝑭 is calculated in the manner of F-bar method:

Edge ഥ𝑭 = Edge ഥ𝐽 1/3 Edge෩𝑭iso.

Concept: combination of F-bar method and ES-FEM
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Results

A few verification analyses
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Bending of Elasto-Plastic Spanner
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Outline

 2 faces are perfectly constrained.

 Pressure is applied to a side part of the spanner.

 Compared to ABAQUS C3D4H with the same 

unstructured T4 mesh.

Fixed

Pressure

Elasto-plastic material:

 Hencky elasticity with 𝐸 = 70 GPa and 𝜈 = 0.3.

 Isotropic von Mises yield criterion with

𝜎Y = 100 MPa and 𝐻 = 7 GPa (constant).

8.5 k nodes & 33 k elems.
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Bending of Elasto-Plastic Spanner
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Equivalent Plastic Strain

Distributions of

equivalent plastic strain

are about the same.

ABAQUS C3D4H

F-barES-FEM-T4
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Bending of Elasto-Plastic Spanner
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F-barES-FEM-T4

Pressure

ABAQUS C3D4H

ABAQUS C3D4H suffers from pressure oscillation

even in a small deformation elasto-plastic case.
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Shearing & Tensioning of Elasto-Plastic Bar
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Outline

 Blue face is perfectly constrained.

 Red face is constrained in plane and pressed down. 

 Compared to ABAQUS C3D4H with the same 

unstructured T4 mesh.

Elasto-plastic material:

 Hencky elasticity with 𝐸 = 1 GPa and 𝜈 = 0.3.

 Isotropic von Mises yield criterion with

𝜎Y = 1 MPa and 𝐻 = 0.1 GPa (constant).

1.2 k nodes & 4.8 k elems.



Plasticity2016

Shearing & Tensioning of Elasto-Plastic Bar
Result

of F-bar

ES-FEM

(Equiv.

Plastic 

Strain)
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Shearing & Tensioning of Elasto-Plastic Bar
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Equivalent Plastic Strain

F-barES-FEM-T4 ABAQUS C3D4H

𝑢𝑧 = 0.5 m

𝑢𝑧 = 1.0 m
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Shearing & Tensioning of Elasto-Plastic Bar
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Equivalent Plastic Strain

F-barES-FEM-T4 ABAQUS C3D4H

Accuracy of equivalent plastic strain seems 

no much different.

𝑢𝑧 = 2.0 m
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Shearing & Tensioning of Elasto-Plastic Bar
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Pressure

𝑢𝑧 = 0.5 m

𝑢𝑧 = 1.0 m

F-barES-FEM-T4 ABAQUS C3D4H
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Shearing & Tensioning of Elasto-Plastic Bar
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Pressure

𝑢𝑧 = 2.0 m

Accuracy of pressure is quite different 

due to the pressure oscillation of ABAQUS C3D4H.

F-barES-FEM-T4 ABAQUS C3D4H



Plasticity2016

Summary
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Benefits and Drawbacks of F-barES-FEM-T4

Benefits

 Locking-free with 1st -order tetra meshes.

No difficulty in severe strain or contact analysis.

 No increase in DOF.

No intermediate nodes. No need for static condensation.

 No restriction of material constitutive model.
Pressure dependent models are acceptable. 

 Less pressure oscillation and corner locking.

Drawbacks

✗ The more cyclic smoothing necessitates 

the more CPU time.
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The Take-Home Message

If you are interested in elasto-plastic problems

that have

 3D bulk complex shapes,

 severe large deformation or contact, and especially

 pressure dependent constitutive models,

then, please consider using F-barES-FEM-T4.
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Thank you for your kind attention!


