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Backuground and Motivation
We want to solve extremely large deformation 

problems easily!!
Final target: 

thermal imprinting
Using FEM, finite elements are

easily distorted and bring analysis
failure.
Adaptive FEM is not convenient

so far.

Challenge meshfree!!
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3 Types of Domain Integration
Background Cell Integration (EFGM)
Numerical diffusion arises through physical state 

interpolation.
Nodal Integration (SCNI)
Doesn't get along with updated Lagrangian.
Zero-energy mode arises without artificial 

stabilization.
Stress-Point Integration
Move of SPs is required with deformation goes on.
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We adopted this, and 
developed a new one 

named FSPI.

There are only few researches especially for 
large deformation. (There is no standard formulation.)
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Objective

In this presentation, 
effectiveness of FSPI in cases of 

elastic and elastoplastic materials
are presented.
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Develop a new type of 
stress-point integration meshfree method,

floating stress-point integration (FSPI),
for large deformation problems
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Outline of FSPI
Concept of FSPI
Fully meshfree method for large deformation
Use stress-points for domain integration
Use updated Lagrangian procedure
Use implicit time advancing sheme

 Introduced Unique Techniques
Shape function construction with Robust MLS
Incremental equilibrium equation

for quasi-implicit time advancing scheme
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Combination of 
these two

is difficult to 
be realized

in meshfree.
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Spacial Discretization & Initialization
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Generate nodes and stress-points in the
initial analysis domain
Any generation methods will do.
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Spacial Discretization & Initialization

Currently, nodes and stress-points are 
generated with unstructured triangular meshes.
Assign initial corresponding volume of stress-

points,       , as                    .
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Spacial Discretization & Initialization
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After the generation and the assignment,
meshes are never referred any more.
This way of node and stress-point generation is 

not an optimal one.
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IR

Shape Function
Robust Moving Least Squares (Robust MLS)
Support radius for each stress-point I, IR,  is set 

dynamically and varies over time.  
<Algorithm to set IR >
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Shape Function
Weight function w (at a stress-point I  to a node J )

Shape function N and its derivatives N '
(at a stress-point I )

same as the original MLS except IR 
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Time Advancing Scheme
Fully-implicit Time Advancing
 Start of a time increment

Start of the Newton-Raphson loop
Update support, w, N, and N' of SPs
Calculate strain, stress, etc. of SPs
Calculate {f int.}, {f ext.}, and [K ]
If || {f ext.} - {f int.}|| is small, break
Solve [K ] {δu } = {f ext.} - {f int.}
Update {∆u } ={∆u } + {δu }
Update disp. of Nodes and SPs

Update all physical variables

Support, shape 
function, etc. are 
changed every 
time in Newton-
Raphson loop.
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Unstable

A node can get 
in-and-out 

of the support 
repetitively
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Time Advancing Scheme
Quasi-implicit Time Advancing
 Start of a time increment
Update support, w, N, and N' of SPs
Start of the Newton-Raphson loop

Update support, w, N, and N' of SPs
Calculate strain, stress, etc. of SPs
Calculate {f int.}, {f ext.}, and [K ]
If || {f ext.} - {f int.}|| is small, break
Solve [K ] {δu } = {f ext.} - {f int.}
Update {∆u } ={∆u } + {δu }
Update disp. of Nodes and SPs

Update all physical variables
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B matrix changed 
suddenly.

Unstable

also changed 
suddenly.
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Time Advancing Scheme
Quasi-implicit Time Advancing + Incremental
 Start of a time increment
Update support, w, N, and N' of SPs
Start of the Newton-Raphson loop

Update support, w, N, and N' of SPs
Calculate strain, stress, etc. of SPs
Calculate {∆f int.}, {∆f ext.}, and [K ]
If || {∆f ext.} - {∆f int.}|| is small, break
Solve [K ] {δu } = {∆f ext.} - {∆f int.}
Update {∆u } ={∆u } + {δu }
Update disp. of Nodes and SPs

Update all physical variables
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Equalibrium
Equation

Stable!!
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Incremental Equilibrium Equation

Virtual Work Equation in Rate Form without body force term
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Incremental Equilibrium Equation
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Linearize
time derivative

Galerkin
discretization
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Elastic Constitutive Equation
Common isotropic elastic model
Exactly the same as the default elastic model 

of ABAQUS/Standard.
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Elastic Cantilever Bending

Quasi-static, Plane strain
Young's modulus: 1GPa, Poisson's ratio: 0.3
The num. of nodes: 335, The num of SPs: 1450
400kN concentrated force to downward dir.
Compared to ABAQUS/Standard with 8-node  

2nd-order quadrilateral elements (CPE8)
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Elastic Cantilever Bending
Distributions of Mises Stress

FSPI Meshfree ABAQUS/Standard
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Elastic Cantilever Bending

Displacement error is less than 0.3%.
Proposing method is shear locking free.
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Elastic Uniaxial Compression
Quasi-static, Plane strain
Young's modulus: 1GPa, 

Poisson's ratio: 0.45
The num. of nodes: 528, 

The num. of SPs: 2455
0.4m displacement to 

downward dir.
Compared to ABAQUS/ 

Standard with 3-node 1st-
order triangular elements 
(CPE3)
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Elastic Uniaxial Compression

FSPI Meshfree ABAQUS/Standard
ABAQUS stopped at 0.28m displacement.
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Elastic Uniaxial Compression

3% displacement difference at 0.28m disp.
Treatments at the concave corner is necessary.
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Elasto-plastic Constitutive Equation
 Classical elasto-plastic model with
 von Mises yield criterion
 associated flow rule
 isotropic hardening rule

 Exactly the same as the 
default elasto-plastic model 
of ABAQUS/Standard.
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Young's Modulus: 1GPa
Poisson's Ratio: 0.3
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Elasto-plastic Cantilever Bending

Quasi-static, Plane strain
Num. of Nodes: 335, Num of SPs: 1450
Oscillating vertical disp. enforced
Compared to ABAQUS/Standard with 8-node  

2nd-order quadrilateral elements (CPE8)
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Elasto-plastic Cantilever Bending

FSPI Meshfree            ABAQUS/Standard
P. 35

Distributions of Equivalent Plastic Strain
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Elasto-plastic Cantilever Bending
Time-history of Vertical Reaction Force at the Bounding Node

Error of reaction force is less than 0.3%
No shear locking in elasto-plastic case too
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Elasto-plastic Bar Shearing

P. 40

Quasi-static, Plane strain
Shearing with 1.5m vertical displacement
 The num. of nodes: 1052,  The num. of SPs: 3156
Compared to ABAQUS/Standard with 3-node 

1st-order triangular elements (CPE3)
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Elasto-plastic Bar Shearing

FSPI
Meshfree

ABAQUS
/Standard
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Summary and Future Work
Summary
A new meshfree method for large deformation 

analysis, FSPI meshfree method, was proposed.
Its formulation based on robust MLS and 

incremental equilibrium equation was presented.
A patch test and a few examples of elasto-plastic

large deformation analysis were performed to verify 
that the method had enough accuracy.

Future Work
solve contact problems
feature of adding node and stress-point
adaptive FEM based on the incremental equilibrium 

equation
P. 43
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Appendix
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List of Specifications
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Standard FEM FSPI Meshfree

Node Yes Yes

Element Yes No (only for initialization)

Evaluation Point Integration Point Stress-Point

Shape Func. in Element with MLS

Integration
Correction

Unnecessary Scaling Type Correction

Time-advancing Fully implicit Quasi-implicit
(shape func. etc. are explicit)

Reference
Configuration

Updated/Total 
Lagrange

Updated Lagrange

Equilibrium Eq. Standard Form Incremental Form



Particles2011

Update Equations for SP variables
Location Ix

Corresponding volume IV

Vinitial: Initial Corresponding Volume
F: Deformation Gradient

x: Current Posiotion, S: Set of Nodes in Support,
φ: Shape Function
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MLS with Total/Updated Lagrange
 In case of wide horizontal stretch:

Before

After
(Total-
Lagrange)

After
(Updated-
Lagrange)
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Support is widened
↓

Unsuitable for 
very large deformation 

and rezoning

Support is dynamic circles
↓

Having nodes 
to start/stop relation

(Same as adaptive FEM)
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