Accurate Estimation of the volume flow rate in the cerebral artery using 3D cine phase-contrast MRI (4D-Flow)

Tokyo Institute of Technology <u>**R. Ito**</u>, Y. Onishi, K. Amaya,

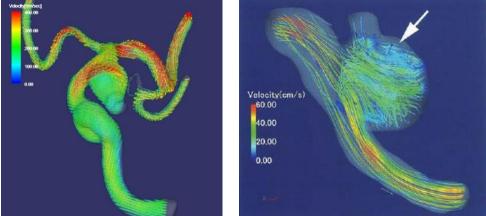
R'Tech Co. Ltd. T. Kosugi, T. Kosugi,

Nagoya Univ. H. Isoda, K. Ichikawa,

Hamamatsu Univ. Hosp. Y. Takehara










## Introduction

#### Target of our research

Patient-specific vascular computational fluid dynamics (CFD) for intracranial aneurysms



浜松医科大学

R'Tegh

#### <u>Goal of our research</u>

#### Accurate calculation of WSS, pressure, etc. in aneurysms with CFD and making a tool for clinical quantitative hemodynamic evaluation





名古屋

MRAClub 2014



# Introduction (cont.)

#### Three requirements for patient-specific CFD

- 1. Accurate Vascular Shape,
- 2. Accurate Blood Viscosity Model,
- 3. Accurate Inlet and Outlet Boundary Conditions (BCs).

In this study, we focus on achieving "Accurate Inlet and Outlet BCs" using <u>4D Flow</u> velocimetry.



Siemens scanner (Magnetom Verio 3.0T; Siemens AG, Healthcare Sector, Erlangen, Germany)









# **Problem in 4D Flow Velocimetry**

The error of 4D Flow velocimetry is too large to ignore.

For example...

#### Settings of a typical phantom study



NETOM Verio Annu yero

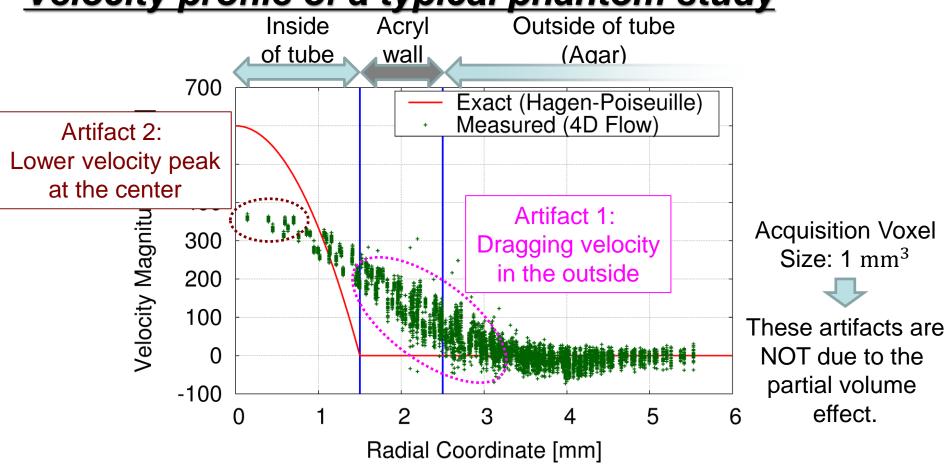
Target phantom (acryl tube surrounded by agar)

Steady laminar flow of glycerol-water solution in the tube is measured.





MRAClub 2014


P. 4





#### **Problem in 4D Flow Velocimetry (cont.)**

#### Velocity profile of a typical phantom study



Cause of these artifacts: Phantom? 4D Flow itself? Or the both? Anyway, it is difficult to obtain accurate velocity profile.









# **Strategy & Objective**

#### Strategies for BC determination

- Estimation of the volume flow rate (VFR) is a lot easier than that of the velocity profile.
- Accurate VFR is a sufficient BC for CFD.

#### <u>Objective</u>

Propose a new method to estimate accurate volume flow rate (VFR) using 4D-Flow velocimetry









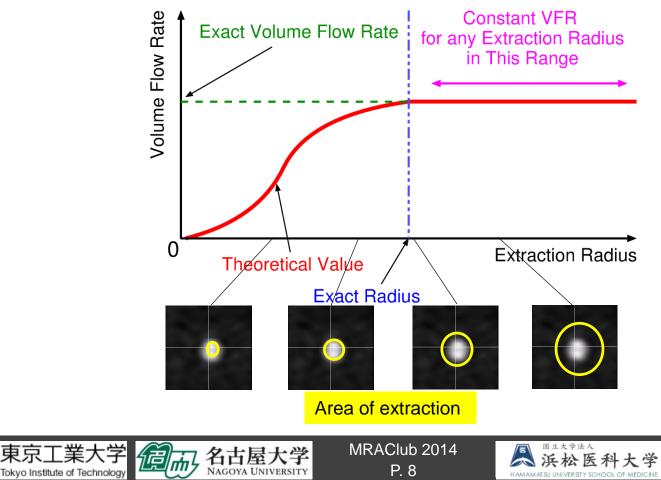
# Method: Procedure of our VFR estimation method





名古屋

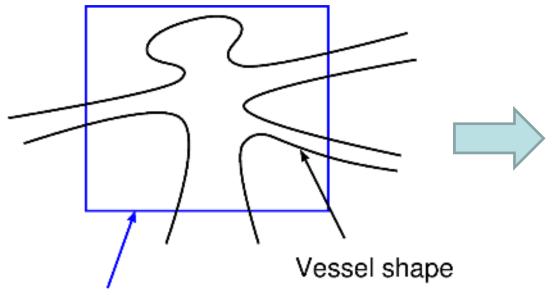
MRAClub 2014 P. 7

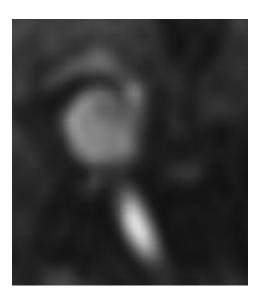



大学



## **Points**


- The average velocity error of 4D Flow measurement is nearly zero [Y.Onishi et al., IJNMBE, 2013].
- The extravascular region is stationary.
- $\Rightarrow$  The mean velocity in the extravascular region is nearly zero.






# Procedure (1 of 3)

- 1. Measurement of the flow velocity vectors in all target vessel domains using 4D Flow.
- 2. Creation of 3D voxel data by combining the 4D Flow velocity magnitude images.

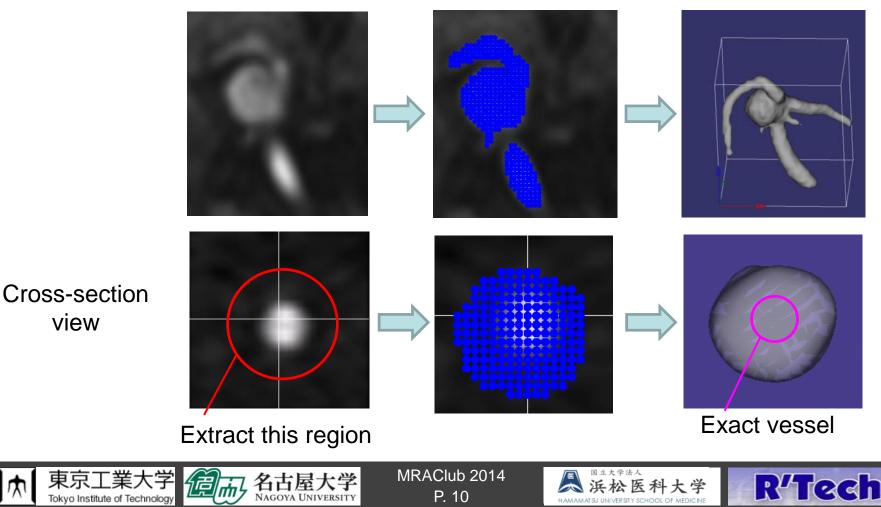




#### Measurement area of 4D Flow

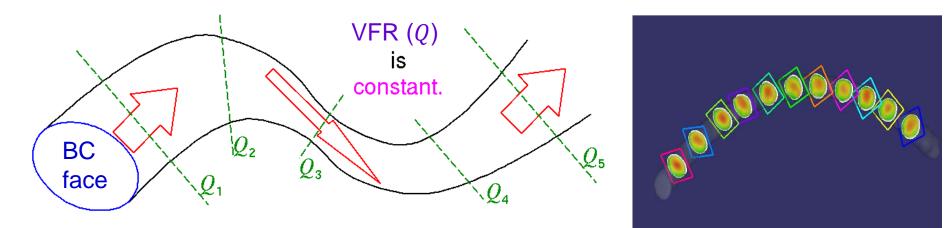


MRAClub 2014


P. 9






## Procedure (2 of 3)

- 3. Extract a vessel region to be larger than the exact vessel shape using the region growing method.
- 4. Conversion to a polygon data.



# Procedure (3 of 3)

- 5. Configure many virtual cross-sections near the BC face.
- 6. Calculate VFR on each virtual cross-section  $Q_k$  ( $k = 1 \sim N$ ).
- 7. Calculate the average of  $Q_k$ s,  $\overline{Q} (= \sum_{k=1}^{N} Q_k / N)$ .



#### We use $\bar{Q}$ as the VFR BC







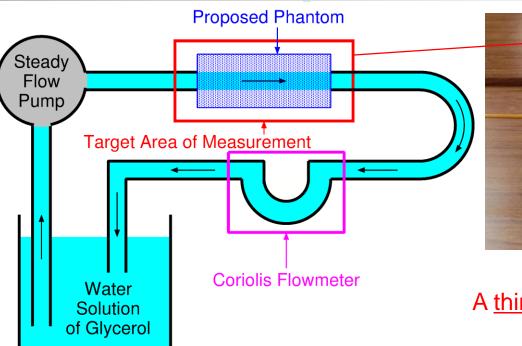


## Result: Validation experiments





MRAClub 2014 P. 12


名古屋大学

NAGOYA UNIVERSITY





# **Experiment Device**



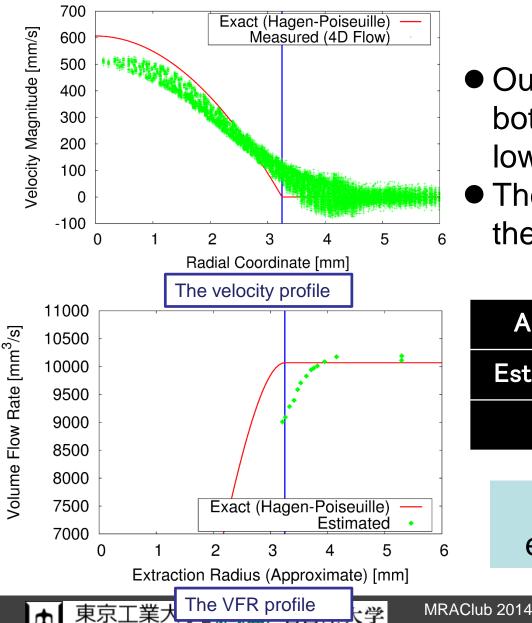


A <u>thin-walled</u> polyimide tube/agar phantom (thickness: 0.05 mm)

- Measurement of Hagen-Poiseuille flow in the tube
- Straight tubes of  $\phi$ =3.1, 6.5 mm
- Water solution of glycerol of 40wt% (no contrast agents)
- Steady laminar flow made by steady flow pump
- Coriolis flowmeter measures the actual VFR










#### Result 1: A Large Diameter Tube ( $\phi$ =6.5 mm)

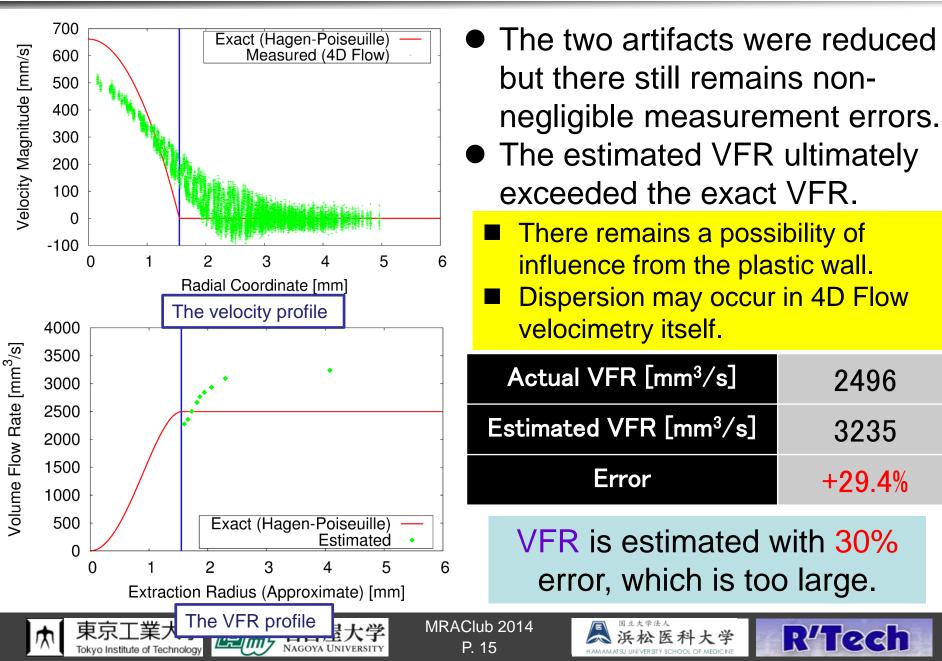
P. 14

NAGOYA UNIVERSITY



Tokvo Institute of Technology

- Our new phantom could reduce both the dragging velocity and lower velocity peak artifacts.
- The estimated VFR agreed with the theoretical curve.


| Actual VFR [mm <sup>3</sup> /s]    | 10068 |
|------------------------------------|-------|
| Estimated VFR [mm <sup>3</sup> /s] | 10190 |
| Error                              | +1.9% |

VFR is successfully estimated within 2% error.

浜松医科大学

R'Tech

#### Result 2: A Small Diameter Tube ( $\phi$ =3.1 mm)



### Summary





名古屋大学 NAGOYA UNIVERSITY





# Summary

- A new method to estimate accurate VFR using 4D Flow velocimetry is proposed.
- In case of steady laminar flow, the VFR in a tube > 6 mm in diameter can be accurately estimated by our method. But, in a tube < 6 mm in diameter, the VFR cannot be estimated with a practically sufficient accuracy.
- It is NOT recommended to use thick-walled sold phantoms or bulk sold phantoms for 4D Flow validation tests.

Thank you for your attention. And I appreciate your questions and comments <u>in slow English without medical terms!</u>









# Appendix











# **Acquisition Parameters (acryl)**

| Scanner               | Siemens Magnetom<br>Verio 3.0T |  |
|-----------------------|--------------------------------|--|
| Coil                  | 12 ch Head coil                |  |
| PAT                   | 2                              |  |
| Phase partial Fourier | 6/8                            |  |
| Slice partial Fourier | 6/8                            |  |
| TR [ms]               | 33.6                           |  |
| TE [ms]               | 4.32                           |  |
| Acquisition Time      | 8:40                           |  |
| FOV [mm]              | 160×160                        |  |
| Matrix                | $160 \times 160$               |  |
| Slice Thickness [mm]  | 1.00                           |  |
| FA [deg]              | 15                             |  |
| VENC [m/sec]          | 1.2                            |  |









# **Acquisition Parameters (polyimide)**

| Scanner               | Siemens Magnetom<br>Verio 3.0T |  |
|-----------------------|--------------------------------|--|
| Coil                  | 12 ch Head coil                |  |
| PAT                   | Off                            |  |
| Phase partial Fourier | Off                            |  |
| Slice partial Fourier | Off                            |  |
| TR [ms]               | 37.04                          |  |
| TE [ms]               | 5.06                           |  |
| Acquisition Time      | 26:41                          |  |
| FOV [mm]              | 160×160                        |  |
| Matrix                | $160 \times 160$               |  |
| Slice Thickness [mm]  | 1.00                           |  |
| FA [deg]              | 15                             |  |
| VENC [m/sec]          | 1.2                            |  |







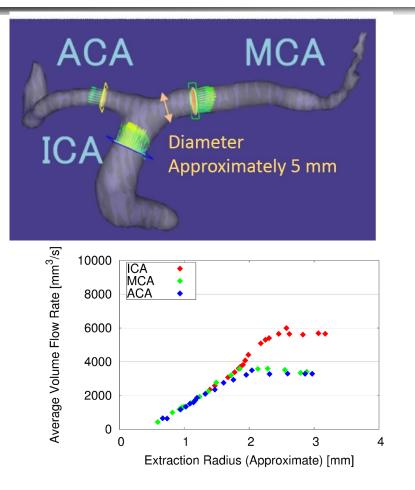


#### **Comparison of the maximum flow velocity**

| Case name      | Exact maximum velocity [mm/s] | Measured maximum velocity [mm/s] | Error [%] |
|----------------|-------------------------------|----------------------------------|-----------|
| Acryl 3.0 mm   | 600.12                        | 346.68                           | -42.2     |
| Acryl 6.0 mm   | 599.95                        | 458.77                           | -23.5     |
| PL/Agar 3.1 mm | 661.38                        | 511.34                           | -22.7     |
| PL/Agar 6.5 mm | 606.85                        | 516.95                           | -14.8     |

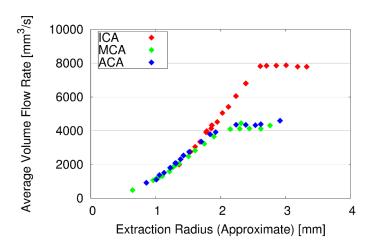
10-20% reduction in the lower velocity peak artifact.






名古屋






#### **Validation Experiment on 1 Healthy Volunteer**



Result with GE Scanner

We estimated average VFR in 1 heartbeat on 3 cross-sections (ICA, MCA and ACA).



**Result with Siemens Scanner** 

The VFR becomes constant at the point where it exceeds the exact radius (approximately 2.5 mm).









# **Points of Our New Phantom**

#### Important factors for the phantom

- The continuity of the proton density between the inner and outer areas of the tube.
- The phantom moisture content is similar to the moisture content of the white matter of the brain.

Acquisition Voxel Size: 1 mm<sup>3</sup> Polyimide tube wall thickness: 0.05 mm

名古屋

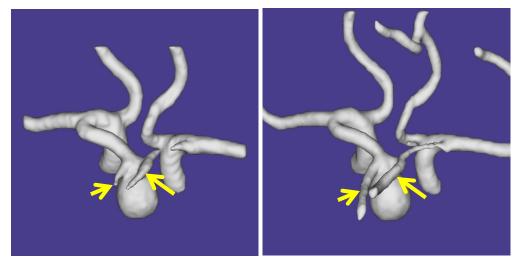




It is difficult for the scanner to detect the thickness if the ratio to the spatial resolution is < 0.1.










#### **Extraction of Vessel Shape using 4D Flow**

Accurate extraction of vessel shapes using 4D Flow is difficult.

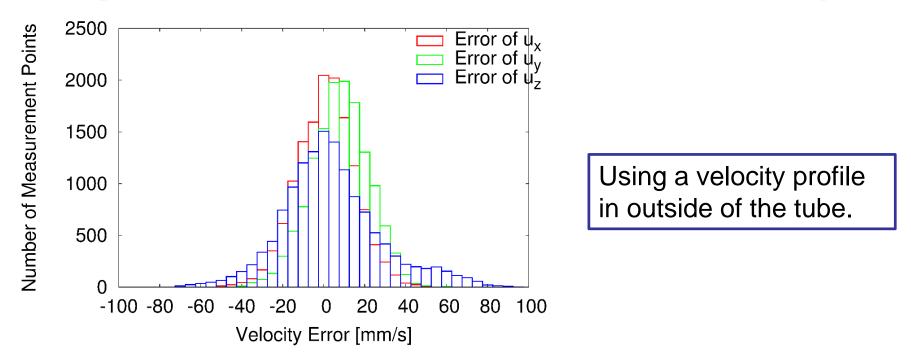
A comparison of extracted silicone cerebral aneurysm phantom vessel shapes.



4D Flow rephased imaging 3D TOF MRA

A number of surface deterioration point were included.
No vessel shapes were extracted (at arrow point).










## **Review: Error Eval. of 4D-Flow**

Histogram of error distribution of 4D Flow velocimetry



• Each error of flow velocity components has similar distribution  $(\mu = 1.73 \text{ mm/s}).$ 

The average velocity error of measurement is almost zero.










## **Result: Acryl Tube**



# **Procedure: Estimation of VFR**

#### Estimation procedure

- Correct  $\overline{Q}$ s of all inlets/outlets so that the sum of VFRs is exactly zero. e.g.) Constraint  $\widehat{O^A} - \widehat{O^B} - \widehat{O^C} - \widehat{O^D} = 0$ Cost Function  $\sum_{i=A,B,C,D} \left(\widehat{Q^i} - \overline{Q^i}\right)^2 \to \min$ 
  - Set the corrected VFR ( $\hat{Q}$ ) as the estimated VFR.







