<u>Accurate</u> Determination of Inlet/Outlet Boundary Conditions in Vascular CFD Analysis using 4D-Flow Velocimetry

Tokyo Institute of Technology <u>Y. Onishi</u>, K. Aoki, K. Amaya,

R'Tech Co. Ltd. T. Shimizu, T. Kosugi,

Nagoya Univ. H. Isoda,

Hamamatsu Univ. Hosp. Y. Takehara,

Stanford Univ. M. Alley

GEHC Japan T. Wakayama

Target of our research

Patient-specific vascular computational fluid dynamics (CFD) for intracranial aneurysms

<u>Goal of our research</u>

Accurate calculation of WSS, pressure, etc. in aneurysms with CFD

Tool for clinical quantitative hemodynamic evaluation

Introduction (cont.)

Three requirements for vascular CFD

- 1. Accurate Extraction of Vascular Shape
- 2. Accurate Setting of Blood Viscosity Model
- 3. <u>Accurate Determination of Inlet/Outlet BC</u>

All of them are essential for the practical vascular CFD.

In this study, we focus on "3. Accurate Determination of Inlet/Outlet BC".

名古屋

Conventional Methods

Conventional methods of BC determination

- Giving the standard (well-used) volume flow rate (VFR)
- Giving a VFR so that representative WSS is the standard
- Giving a Womersly velocity profile of the standard VFR

→ Physical basis is too weak.

 Giving a velocity profile measured by 2D/3D cine PC-MR.

Measurement error (artifact) is too large.

The method to determine the inlet/outlet BC <u>accurately</u> have not been established yet.

<u>Objective</u>

Propose a new method to determine <u>accurate</u> inlet/outlet BC

for vascular CFD using 4D-Flow

Table of contents

Part 1: Experiments for error evaluation of 4D-Flow

- Part 2: Procedure of our BC determination method
- Part 3: Validation experiments
- Part 4: Summary

Part 1:

Experiments for error evaluation of 4D-Flow

名古屋フ

NAGOYA UNIVERSIT

Error Eval. of 4D-Flow (Device)

- Rotative phantom (nested two cylinders)
- Water solution of glycerol of 40wt% (no contrast agents)
 GEHC Signa HDxt 3.0T with 8ch brain array
 Rotate the inner cylinder at a constant speed

⇒ inner fluid rotates rigidly

Error Eval. of 4D-Flow (Results) <u>Velocity distribution on a horizontal plane</u>

Rotating speed: 0 rpm

Rotating speed: 360 rpm

- Roughly agreed with actual velocity
- Many pixel have apparently incorrect velocity
- Seems to contain the random error

Error Eval. of 4D-Flow (Results)

Histogram of velocity component error

Tokvo Institute of Technology

Error Eval. of 4D-Flow (Findings)

Findings through the experiment

- The raw 4D-Flow velocity data at each pixel is inaccurate, and thus unsuitable to be directly assigned as the BCs in vascular CFD analyses;
- The averaged or lumped data calculated from the raw 4D-Flow velocity data (e.g. volume flow rate) can be accurate according to the law of large numbers.

名古

Part 2: Procedure of our BC determination method

名古

BC Determination Method

Procedure of our method

(3) VFR Corrected Velocity Profile

Correction of Velocity Profile with VFR

Procedure (1): Estimation of VFR

<u>Points</u>

- Blood can be regarded as incompressible fluid.
- The rate of the expansion and contraction of the blood vessel volume is small compared to the VFR.
- ⇒If no bifurcation is there, VFR is constant on any cross-section

Estimation procedure

- Configure many virtual cross-sections near the BC face
- Calculate VFR of each virtual cross-section Q_k ($k = 1 \sim N$)
- Calculate the average of Q_k s, $\overline{Q} (= \sum_{k=1}^{N} Q_k / N)$

According to the law of large numbers,

 \overline{Q} converges to the true value as increasing N.

MRAClub 2012 P. 13

 Q_2

 Q_3

VFR (Q) is constant.

 O_{Λ}

Procedure (1): Estimation of VFR

Estimation procedure (cont.)

Correct \overline{Q} s of all inlets/outlets so that the sum of VFRs is exactly zero. e.g.) Constraint $\widehat{O^A} - \widehat{O^B} - \widehat{O^C} - \widehat{O^D} = 0$ Cost Function $\sum_{i=A,B,C,D} \left(\widehat{Q^i} - \overline{Q^i}\right)^2 \to \min$ Set the corrected VFR (\hat{Q}) as the estimated VFR. If the extracted inlet/outlet vessel is sufficiently long, use \hat{Q} as the VFR BC MRAClub 2012 れ 名古屋 R'Tech

P. 14

Procedure (2): Smoothing of Profile

<u>Point</u>

Velocity profiles on BC faces obtained from the raw 4D-Flow data are jagged. \Rightarrow Need smoothing with a low-pass filter.

Smoothing procedure

- Generate meshes over the BC face
- Interpolate the velocity at the center of each mesh using moving least square (MLS) method.

MRAClub 2012 ____ P. 15

Procedure (3): Correction of Profile

<u>Point</u>

- Procedure (1) gives the accurate VFR (\hat{Q}).
- Procedure (2) gives a smooth velocity profile.
- \Rightarrow modify the profile so that its VFR agrees with \hat{Q}

Correction procedure

 Magnify the velocities by a constant factor

名古

If the extracted inlet/outlet vessel is short, use the VFR corrected velocity profile as the velocity BC.

Part 3: Validation experiments

MRAClub 2012 P. 17

名古屋大学

NAGOYA UNIVERSITY

Validation Experiments (Device)

- Straight and curved pipes of ϕ =3 mm
- Water solution of glycerol of 40wt% (no contrast agents)

MRAClub 2012

P. 18

🙏 浜松医科大学

R'Tech

- Steady laminar flow made by steady flow pump
- Measuring cylinder measures the actual VFR

Validation Experiments (Results) Raw 4D-Flow velocity data

The actual flow is a laminar flow but it appears as if a turbulent flow because of the large error of 4D-Flow.

VFR estimated by our method with 11 virtual cross-sections

VFR is successfully estimated within 2% error.

名古屋ナ

NAGOYA UNIVER

Comparison of Velocity Profile

Estimated velocity profiles are in good agreement

with actual velocity profile

MRAClub 2012 P. 21

名古屋大学

NAGOYA UNIVERSITY

Comparison of Velocity Profile

A short inlet/outlet length makes the profile accurate.

Our method can determine the velocity BC with practically sufficient accuracy.

Part 4: Summary

MRAClub 2012 P. 23

名古屋大学 NAGOYA UNIVERSITY

- A new method to determine the <u>accurate</u> inlet/outlet BC for vascular CFD analysis using 4D-Flow is proposed.
- Its practically sufficient accuracy is validated through the experiments with straight and curved pipe phantoms.
- Our method can satisfy one of the three requirements for vascular CFD analysis.

Thank you for your attention. And give me questions *in slow English without medical terms!!*

名古

Appendix

Measurement Parameters

TR [ms]	39.28
TE [ms]	05.26
Acquisition Time	16:49
FOV [mm]	160×160
Matrix	320×320
Slice Thickness [mm]	0.8
FA [deg]	15
Band Width [Hz/pixel]	488
VENC [m/sec]	1.2

This is just an example.

An Example of Breakdown of VFR

Cross-section #	VFR [mm³/s]
CS-01	1090
CS-02	1141
CS-03	1155
CS-04	1107
CS-05	1117
CS-06	1163
CS-07	1226
CS-08	1150
CS-09	1221
CS-10	1310
CS-11	1324

Ave.: 1182.2 mm³/s, Stand. Dev.: 75.1 mm³/s Exact: 1150.3 mm³/s, Error: 2.8 %

Advantage/Disadvantage of 4D-Flow

<u>Advantage</u>

The vessel shape and velocity distribution can be obtained at the same time by only one-time measurement.

 \Rightarrow Reducing the cost and strain of patients.

<u>Disadvantage</u>

Low spatial resolution

MRAClub 2012 P. 29

名古屋大学 NAGOYA UNIVERSITY

