Recent Advancement in Smoothed Finite Element Methods for Locking-free Analysis with Tetrahedral Elements

Yuki ONISHI Tokyo Institute of Technology (Japan)

KJ Workshop2015

Motivation & Background

<u>Motivation</u>

We want to analyze **severely large deformation** problems in solids **accurately and stably**!

(Target: automobile tire, thermal nanoimprint, etc.)

<u>Background</u>

Finite elements are **distorted** in a short time, thereby resulting in convergence failure.

Mesh rezoning method (*h*-adaptive mesh-to-mesh solution mapping) is indispensable.

Our First Result in Advance

P. 3

東京工業

Tokyo Institute of Technology

What we want to do:

- Static
- Implicit
- Large deformation
- Mesh rezoning •

Issues

<u>The biggest issue</u> in large deformation mesh rezoning

It is impossible to remesh arbitrary deformed 2D or 3D domains with quadrilateral or hexahedral elements.

We have to use triangular or tetrahedral elements...

However, the *standard* (constant strain) triangular or tetrahedral elements induce shear and volumetric locking easily, which leads to inaccurate results.

Conventional Methods

- Higher order elements:
 - X Not volumetric locking free; Not effective in large deformation due to intermediate nodes.
- EAS elements:
 - X Unstable.
- B-bar, F-bar and selective integration elements:

東京広藤内崎WN potential (S校内设金k空向295~). Let's try! Tokyo Institute of Technology
P. 5

- X Not applicable to triangular/tetrahedral mesh.
- F-bar patch elements:
 - X Difficult to construct good patches
- u/p hybrid (mixed) elements

X No sufficient formulation for triangular/tetrahedral mesh is

presented so far. (There are almost acceptable hybrid elements such as C3D4H or C3D10H of ABAQUS.)

Smoothed finite elements:

Objective

Develop a locking-free, accurate and stable smoothed finite element method (S-FEM) with 4-node tetrahedral elements (T4) for large deformation problems

Table of Body Contents

- Quick survey of **3 classical S-FEMs**
- Introduction to a recent S-FEM: hES-FEM
- Introduction to our new S-FEM: F-barES-FEM
- Summary

Quick survey of **3 Classical S-FEMs**

(i) Edge-based S-FEM (ES-FEM)

 \blacksquare Calculate [B] at element as usual.

Tokyo Institute of Technology

Distribute [B] to the connecting edges and make [^{Edge}B].

F, T etc and {f int} are calculated on smoothed edge domains. Generally accurate but induces volumetric locking.

(ii) Node-based S-FEM (NS-FEM)

- Calculate [B] at element as usual.
 - Distribute [B] to the connecting nodes and make [NodeB]
- **F**, **T** etc and $\{f^{\text{int}}\}\$ are calculated on smoothed node domains.

Generally not accurate but volumetric locking free.

(due to zero-energy modes, which are arisen in reduced integration finite elements as hour-glass modes)

close to FVM with vertex-based control volume

Characters of 3 Classical S-FEMs

- All the classical S-FEMs have an unique benefit: <u>no increase in DOF</u>.
 - The nodal displacement vectors are only the unknown. (No pressure or volumetric strain unknowns.)
 - Static condensation is unnecessary.
- All S-FEMs have a drawback:

increase in the bandwidth of stiffness matrix [K].

- [Bandwidth of ES-FEM-T4] $\simeq 2 \times$ [Bandwidth of standard FEM-T4])
- [Bandwidth of NS-FEM-T4]
 = [Bandwidth of selective S-FEM-T4]

 $\simeq 4 \times$ [Bandwidth of standard FEM-T4])

■ Arruda-Boyce hyperelastic material (v_{ini} = 0.499)
 ■ Applying pressure on ¼ of the top face

<u>Result of</u> <u>Selective</u> <u>ES/NS-</u> FEM-T4

Vertical Displacements vs. Applied Pressure

- Constant strain element (C3D4) locks quickly.
- Other elements including selective S-FEMs do not lock.

Selective S-FEMs are locking-free in large strain analysis!!

Selective **ES**/NS-FEM-T4

Selective **FS**/NS-FEM-T4

Pressure oscillation is present...

Characteristics of Classical S-FEMs

	Shear Locking	Volumetric Locking	Zero- Energy Mode	Pressure Oscillation
Standard FEM-T4	X	X	\checkmark	X
NS-FEM-T4	\checkmark	\checkmark	X	X
ES-FEM-T4 & FS-FEM-T4	\checkmark	X	\checkmark	X
Selective S-FEM-T4	\checkmark	\checkmark	\checkmark	X

There still remain issues to be resolved.

Introduction to *a Recent* S-FEM: **hES-FEM**

Hat-enhanced ES-FEM (hES-FEM)

- An additional internal node (*hat node* or bubble node) is put at each standard triangular element.
- Each hat node has its own displacement DOFs.
- The shape function of hat nodes is the hat function.
- Namely in hES-FEM, 3 sub-elements (Δ124, Δ234, Δ314) have the same shape functions as the standard triangular elements.

Hat-enhanced ES-FEM (hES-FEM) Brief formulation

- Calculate [B] at sub-element as usual.
- Distribute [B] to the connecting edges and make [^{Edge}B].
- **F**, **T** etc and $\{f^{int}\}$ are calculated on smoothed edge domains.

<u>Result</u> <u>of</u> <u>hES-FEM</u>

Mises stress distribution is smooth.

But, it got convergence failure at a relatively earlier stage due to pop out of hat nodes...

Vertical Displacements vs. Applied Pressure

- Locking-free and accurate.
- hES-FEM stopped at 82% nominal compression, where as other locking-free methods stopped around 95% of that.

KJ Workshop2015 P. 21

ΤΟΚΥΟ ΤΕΕΗ

Pressure distribution

Pressure oscillation is almost suppressed.

Characteristics of hES-FEM

Benefits

- ✓ Locking-free.
- ✓ Only displacement DOF.
- ✓ Suppress pressure oscillation to some extent.

Drawbacks

- X Early convergence failure due to pop out of internal nodes.
- ✗ Significant increase in total DOF.
 In general unstructured T4 mesh,
 [the num. of elements] ≈ 5 × [the num. of nodes].
 i.e., total DOF of hES-FEM is 6 times larger...

Introduction to *our new* S-FEM: F-barES-FEM

F-bar aided ES-FEM (F-barES-FEM)

Use "<u>cyclic smoothing</u>" to calculate [F^{vol}].
 Apply F-bar method to obtain [F].

F-bar aided ES-FEM (F-barES-FEM) Brief Formulation

- 1. Calculate J (= det([F])) at elements as usual.
- 2. Smooth J of elements at nodes.
- 3. Smooth *J* of nodes at elements.
- 4. Repeat 2. and 3. as necessary.

(Currently we employ 2 cycles.)

- 5. Smooth *J* of elements at edges.
- 6. Combine the cyclically smoothed \overline{J} and $[F^{iso}]$ of ES-FEM as $[\overline{F}] = \overline{J}^{1/3} [F^{iso}]$.

Pressure distribution

No checkerboard patterns are observed.

F-barES-FEM(2) suppresses pressure oscillation!!

Example: Compression of 1/8 Cylinder

- Neo-Hookean hyperelastic material ($v_{ini} = 0.499$).
- Enforced displacement is applied to the top surface.
- Stress singularity is present around the rim.

Example: Compression of 1/8 Cylinder

Pressure (Pa) **Result** -3.0e+08+1.0e+09<u>of F-bar</u> <u>ES-FEM(2)</u> 50% nominal compression Almost smooth pressure distribution is obtained except just around the rim.

Example: Compression of 1/8 Cylinder

<u>Result</u> <u>of F-bar</u> <u>ES-FEM(2)</u>

50% nominal compression

Smooth Mises stress distribution is obtained except just around the rim.

Mises_Stress (Pa)

0e+00 7e+7 1.4e+8 2e+08

▶ 東京工業大学 Tokyo Institute of Technology

Characteristics of F-barES-FEM

Benefits

- ✓ Locking-free.
- ✓No increase in DOF.
- Suppress pressure oscillation as increasing the number of cyclic smoothing.

Drawbacks

 Increase in bandwidth of stiffness matrix [K]. In general unstructured T4 mesh, F-barES-FEM(1): 10 times wider than FEM-T4, F-barES-FEM(2): 20 times wider than FEM-T4.
 But, exactly consistent [K] is not necessary and thus speed up can be expected.

Summary

Characteristics of S-FEMs

	Shear & Volumetric Locking	Zero- Energy Mode	Dev/Vol Coupled Material	Pressure Oscillation	Severe Strain
Standard FEM-T4	X	✓	\checkmark	X	✓
Selective S-FEM-T4	\checkmark	\checkmark	X	X	\checkmark
hES-FEM-T4	\checkmark	\checkmark	\checkmark	✓	X
F-bar ES-FEM-T4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

This is ✓ when the num. of cyclic smoothing is large enough; but, speed-up is necessary.

Take-Home Messages

- 1. Recent S-FEMs are about to realize locking-free, accurate and stable large deformation analysis of nearly incompressible solids with T4 elements.
- Recent S-FEMs have no increase in DOF (or no increase in non-displacement DOF); thus, they have potential to be applied to various types of analysis such as eigen mode, harmonic response, explicit dynamic, etc..

Thank you for your kind attention!

