Recent advances in smoothed finite element methods with tetrahedral elements

Yuki ONISHI Tokyo Institute of Technology, Japan

Motivation

What we want to do:

- Solve hyper large deformation analyses accurately and stably.
- Treat complex geometries with tetrahedral meshes.

- Consider nearly incompressible materials ($\nu \simeq 0.5$).
- Support **contact** problems.
- Handle auto re-meshing.

Conventional tetrahedral (T4/T10) FE formulations still have issues in accuracy or stability especially in nearly incompressible cases.

■ 2nd or higher order elements:

X Volumetric locking.

Accuracy loss in large strain due to intermediate nodes.

Enhanced assumed strain method (EAS):

X Spurious low-energy modes.

B-bar method, F-bar method, Selective reduced integration:

- X Not applicable to tetrahedral element directly.
- F-bar-Patch method:

X Difficulty in building good-quality patches.

u/p mixed (hybrid) method:

(e.g., ABAQUS/Standard C3D4H and C3D10MH)

X Pressure checkerboarding etc..

Issues (cont.)

E.g.) Compression of neo-Hookean **hyperelastic** body with $v_{ini} = 0.49$

of Nodes is almost the same.

1st order hybrid T4 (C3D4H)

- ✓ No shear/volumetric locking
- X Pressure checkerboarding
- X Corner locking

2nd order modified hybrid T10 (C3D10MH)

- ✓ No shear/volumetric locking
- X Early convergence failure
- X Low interpolation accuracy

KAIST Seminar 2017 Jan. 5 P. 4

Pressure

.000e+09

A Recent Solution

- A new idea of FE formulation called "Smoothed Finite Element Method (S-FEM)" was recently proposed and is in researching today widely.
- Our group has proposed a latest S-FEM named "F-barES-FEM-T4" (detailed later):
 - No intermediate node (i.e., 4-node tetrahedral (T4) mesh),
 - Free from shear, volumetric and corner locking,
 - No pressure checkerboarding,
 - Long lasting in large deformation.

A Recent Solution (cont.)

E.g.) Compression of neo-Hookean hyperelastic body with $v_{ini} = 0.49$

Same mesh as C3D4H case.

F-barES-FEM-T4 (One of the latest S-FEM)

- ✓ No shear/volumetric locking
- ✓ No corner locking
- ✓ No pressure checkerboarding

Topic of Today's Talk

Introduce and demonstrate one of the latest S-FEM called F-barES-FEM-T4 with explaining the classical S-FEM-T4s.

Keywords: Incompressibility, Tetrahedral mesh, Large deformation, Smoothed FEM

Table of Body Contents

- Introduction of 3 classical S-FEM-T4s
- Introduction of F-barES-FEM-T4
- Demonstration of F-barES-FEM-T4 (hyperelastic, elastoplastic, dynamic, remeshing, contact)
- Summary

Introduction of 3 classical S-FEM-T4s

- Smoothed finite element method (S-FEM) is a relatively new FE formulation proposed by G. R. Liu in 2007.
- S-FEM is one of the **strain smoothing** techniques.
- There are several types of S-FEMs depending on the location of strain smoothing: edge, node, face, cell, etc..
- Mainly, there are the following <u>3 classical S-FEMs</u> with 4-node tetrahedral (T4) meshes:
 - 1. Edge-based S-FEM (ES-FEM)
 - 2. Node-based S-FEM (NS-FEM)
 - 3. Selective ES/NS-FEM

For simplicity, these S-FEMs in 2D are explained.

1. Outline of Edge-based S-FEM (ES-FEM)

- Calculate [B] at each element as usual.
- Distribute [B] to the connecting edges with area weight and build [^{Edge}B].
- Calculate $F, T, \{f^{\text{int}}\}$ etc. in each edge smoothing domain.

As if putting an integration point on each edge center

2. Outline of Node-based S-FEM (NS-FEM)

- \blacksquare Calculate [B] at each element as usual.
- Distribute [B] to the connecting nodes with area weight and build [^{Node}B].
- Calculate $F, T, \{f^{\text{int}}\}$ etc. in each node smoothing domain.

3. Outline of Selective ES/NS-FEM

- Calculate F and T in both edge & node smoothing domains.
- Split T into deviatoric part T^{dev} and hydrostatic part T^{hyd} .
- Calculate $\{ {}^{Edge} f_{dev}^{int} \}$ and $\{ {}^{Node} f_{hyd}^{int} \}$ and merge them.

Characters of 3 Classical S-FEMs

All S-FEMs have an unique benefit: <u>No increase in DOF</u>.

- Purely displacement-based formulation.
- The nodal displacement vector $\{u\}$ is only the unknown. (No pressure p or volumetric strain ε^{vol} unknowns.)
- Static condensation is unnecessary.

All S-FEMs have a common drawback: Increase in bandwidth of the stiffness matrix [K].

- [Bandwidth of ES-FEM-T4] $\simeq 2 \times$ [Bandwidth of standard FEM-T4])
- [Bandwidth of NS-FEM-T4]
 = [Bandwidth of Selective ES/NS-FEM-T4]

 \simeq 4 × [Bandwidth of standard FEM-T4])

Bending of Cantilever

<u>Outline</u>

Static

Implicit

- Neo-Hookean hyperelastic material
- Initial Poisson's ratio: 0.499.
- Bending dead load is applied to the cantilever tip.
- Results of ES-FEM, NS-FEM and Selective ES/NS-FEM are compared.

Bending of Cantilever

<u>Pressure dist.</u>

Static

Implicit

3 classical S-FEMs cannot suppress pressure checkerboarding and thus a different approach is necessary other than the selective integration.

- ES-FEM has locking and major checkerboarding.
- NS-FEM has spurious modes and minor checkerboarding.
- Selective ES/NS-FEM has medium checkerboarding.

Introduction of F-barES-FEM-T4

Quick Review of F-bar Method

For quadrilateral (Q4) or hexahedral (H8) elements

<u>Algorithm</u>

- 1. Calculate deformation gradient F at the element center, and then make the relative volume change \overline{J} (= det(F)).
- 2. Calculate deformation gradient **F** at each gauss point as usual, and then make \mathbf{F}^{iso} (= $\mathbf{F} / J^{1/3}$).
- 3. Modify **F** at each gauss point to obtain \overline{F} as $\overline{F} = \overline{J}^{1/3} F^{iso}$.

X

- A kind of low-pass filter for *J*
- 4. Use \overline{F} to calculate the stress T, nodal force $\{f^{\text{int}}\}$ etc..

F-bar method is used to **avoid volumetric locking** in Q4 or H8 elements. Yet, it **cannot avoid shear locking**.

Outline of F-barES-FEM

Concept: combine ES-FEM and NS-FEM using F-bar method

Outline of F-barES-FEM (cont.) Brief Formulation

- 1. Make $^{\text{Elem}}F$ as usual and calculate $^{\text{Elem}}J$.
- 2. Smooth ^{Elem} J at nodes and get ^{Node} \tilde{J} .
- 3. Smooth ^{Node} \widetilde{J} at elements and get ^{Elem} \widetilde{J} .
- 4. Repeat 2. and 3. as necessary (*c* times).
- 5. Smooth Elem $\tilde{\tilde{J}}$ at edges and get $\frac{Edge}{J}$.
- 6. Combine $E^{dge}\overline{J}$ and $E^{dge}F^{iso}$ of ES-FEM as

 $Edge\overline{F} = Edge\overline{J}^{1/3} Edge\overline{F}^{iso}$.

Hereafter, F-barES-FEM-T4 with *c* cycles of smoothing is called "F-barES-FEM-T4(*c*)".

Cyclic

Smoothing

of I

A kind of

low-pass filter

Additional Point of F-barES-FEM

Typical Flow of FE Solver

Selective ES/NS-FEM

splits T into T^{hyd} and T^{dev} and merges $\{f_{hyd}^{int}\}$ and $\{f_{dev}^{int}\}$ into $\{f^{int}\}$.

■ F-barES-FEM

builds F^{vol} and F^{iso} separately and combines F^{vol} and F^{iso} into F.

F-barES-FEM can handle any kind of material constitutive model.

Bending of Cantilever

<u>Outline</u>

Static

Implicit

- Neo-Hookean hyperelastic material
- Initial Poisson's ratio: 0.49 or 0.499.
- Two types of T4 meshes: a structured mesh and an unstructured mesh.
- Compared to ABAQUS C3D4H (hybrid T4 element).

• Neo-Hookean hyperelastic material ($v_{ini} = 0.499$).

- Enforced displacement is applied to the top surface.
- Compared to ABAQUS C3D4H with the same unstructured T4 mesh.

Static Implicit Barreling of 1/8 Cylinder

<u>Result of</u> <u>F-bar</u> <u>ES-FEM(2)</u> (Mises Stress)

50% nominal compression

Smooth Mises stress distribution is obtained except just around the rim.

Mises_Stress (Pa)

0e+00 7e+7 1.4e+8 2e+08

Static Implicit Barreling of 1/8 Cylinder

Pressure dist.

Tokyo Institute of Technology

Strange deformation (corner locking) around the rim

P. 29

Pursuing Excellence

Characteristics of FEM-T4s

	Shear & Volumetric Locking	Zero- Energy Mode	Dev/Vol Coupled Material	Pressure Oscillation	Corner Locking	Severe Strain
Standard FEM-T4	X	\checkmark	\checkmark	X	X	\checkmark
ABAQUS C3D4H	\checkmark	\checkmark	\checkmark	X	X	\checkmark
Selective S-FEM-T4	\checkmark	\checkmark	X	X	X	\checkmark
F-bar ES-FEM-T4	\checkmark	\checkmark	\checkmark	√ *	✓*	\checkmark

*) when the num. of cyclic smoothings is sufficiently large.

Characteristics of [K] in F-barES-FEM-T4

- No increase in DOF.
 (No Lagrange multiplier. No static condensation.)
- Positive definite.
- X Wider bandwidth.

In case of standard unstructured T4 meshes,

Method	Approx. Bandwidth	Approx. Ratio		
Standard FEM-T4	40	1		
F-barES-FEM-T4(1)	390	x10		
F-barES-FEM-T4(2)	860	x20		
F-barES-FEM-T4(3)	1580	x40		
F-barES-FEM-T4(4)	2600	x65		

Ill-posedness in nearly incompressible cases.(No improvement in condition number.)

Demonstration of F-barES-FEM-T4

unstructured T4 mesh.

Compression of a Block

Static

Implicit

Compression of a Block

Static

Implicit

Static Implicit Bending of Elasto-plastic Spanner

Outline

8.5 k nodes & 33 k elems.

Elasto-plastic material:

- Hencky elasticity with E = 70 GPa and v = 0.3.
- Isotropic von Mises yield criterion with
 - $\sigma_{\rm Y} = 100$ MPa and H = 7 GPa (constant).
- 2 faces are perfectly constrained.

Pressure

- Pressure is applied to a side part of the spanner.
- Compared to ABAQUS C3D4H with the same unstructured T4 mesh. 東京丁業大学

Fixed

Static Implicit Bending of Elasto-plastic Spanner

Pressure dist.

Static Mean-tensioning of Elasto-plastic Bar

Elasto-plastic material:

- Hencky elasticity with E = 1 GPa and v = 0.3.
- Isotropic von Mises yield criterion with $\sigma_{\rm Y} = 1$ MPa and H = 0.1 GPa (constant).
- Blue face is perfectly constrained.
- Red face is constrained in plane and pressed down.
- Compared to ABAQUS C3D4H with the same unstructured T4 mesh.

ΤΟΚΥΟ ΤΕΕΗ

Pursuina Excellence

<u>Equivalent plastic strain dist.</u>

Equivalent plastic strain dist.

Accuracy of equivalent plastic strain seems no much different.

F-barES-FEM-T4 is free from pressure checkerboarding in elasto-plastic analysis.

3 k nodes & 14 k elems.

[Aluminium] Hencky elasticity: E = 70 GPa, $\nu = 0.3$. Isotropic von Mises plasticity: $\sigma_{\rm Y} = 100$ MPa , H = 0.7 GPa (const.), (c = 2)

- Bottom face is perfectly constrained.
- Top face is constrained in the plane and twisted 360 deg. around the vertical axis.
- Compared to ABAQUS C3D4H with the same tet mesh.
- Multiple Fs at each edge on the material interface.

Equivalemt plastic strain dist.

ABAQUS C3D4H has checkerboarding in plastic strains, meanwhile F-barES-FEM-T4 has smooth plastic strain dist..

Pressure dist.

ABAQUS C3D4H has checkerboarding in stresses, meanwhile F-barES-FEM-T4 has smooth stress dist..

Dynamic Explicit **Dynamic Bend of Cantilever**

<u>Outline</u>

Neo-Hookean hyperelastic material:

- $E_{\rm ini} = 6$ MPa, $\nu_{\rm ini} = 0.499$, $\rho = 1000$ kg/m³.
- Uniform initial velocity: $\dot{u}_z = -2 \text{ m/s}$.
- Compared to ABAQUS/Explicit C3D4 (NOT C3D4H)
 & C3D8 (hexahedral selective reduced integration).

Dynamic Explicit **Dynamic Bend of Cantilever**

Pressure sign distributions

ABAQUS/Explicit C3D4

ABAQUS/Explicit C3D8

F-barES-FEM-T4(2)

(XLocking &

Pressure oscillation)

F-barES-FEM-T4 has no locking & less pressure checkerboarding in dynamic explicit analysis.

Explicit Dynamic Bend of Cantilever

<u>Pressure at t = 1.5 s</u>

F-barES-FEM-T4 has good accuracy in pressure.

Displacement accuracy of F-barES-FEM is independent of the number of cyclic smoothings.

Swinging of Bunny Ears

- Iron ears: $E_{ini} = 200 \text{ GPa}$, $\nu_{ini} = 0.3$, $\rho = 7800 \text{ kg/m}^3$, Neo-Hookean, **No cyclic smoothing.**
- Rubber body: $E_{ini} = 6$ MPa, $\nu_{ini} = 0.49$, $\rho = 920$ kg/m³, Neo-Hookean, **1 cycle of smoothing.**
- Compared to ABAQUS/Explicit C3D4 etc..

Dynamic

Explicit

Dynamic Explicit

<u>Pressure</u> <u>sign</u> <u>dist.</u>

ABAQUS/Explicit C3D4 Selective ES/NS-FEM-T4

F-barES-FEM-T4

NS-FEM-T4

Only F-barES-FEM-T4 presents a valid result.

Eigen Natural Modes of 1/4 Cylinder Mode Outline

- Iron part: $E_{ini} = 200 \text{ GPa}$, $v_{ini} = 0.3$, $\rho = 7800 \text{ kg/m}^3$, Elastic, **No cyclic smoothing.**
- Rubber part: $E_{ini} = 6$ MPa, $v_{ini} = 0.499$, $\rho = 920$ kg/m³, Elastic, **2 cycles of smoothing.**
- Compared to ABAQUS C3D4, C3D4H, and C3D8.

Eigen Natural Modes of 1/4 Cylinder

<u>Eigen frequencies</u>

C3D4 and C3D4H show higher frequencies (stiffer results).

F-barES-FEM-T4 and C3D8 are in good agreement.

Eigen
ModeNatural Modes of $\frac{1}{4}$ Cylinder

1st eigen mode

(reference)

Selective ES/NS-FEM-T4

F-barES-FEM-T4

NS-FEM-T4

The 1st modes are all the same as the reference solution.

Eigen
ModeNatural Modes of $\frac{1}{4}$ Cylinder

11th eigen mode

ABAQUS C3D8 (reference)

Selective ES/NS-FEM-T4

F-barES-FEM-T4

NS-FEM-T4

NS-FEM-T4 shows strange results due to low-energy mode.
 Selective ES/NS-FEM-T4 & F-barES-FEM-T4 are valid.

- Sticky contact between a rigid surface & a block.
- Weak pressure on the top of the block.
- Compare the contact force distributions among ABAQUS C3D10H, C3D10HS, C3D10MH and C3D4H with the same Tet mesh.

Static
ImplicitContact Press of Block

Nodal normal contact force dist.

Static Implicit Contact Press of Block Nodal normal contact force dist.

T4 elements including F-barES-FEM-T4 present no contact force oscillation.

Sticky contact between a rigid surface & a bullet.

- Enforced displacement on the top face of the bullet.
- Compared to ABAQUS C3D10H, C3D10HS, C3D10MH and C3D4H with the same Tet mesh.

Contact Press of Bullet

<u>Pressure dist.</u>

Static

Implicit

Static **Contact Press of Bullet** Implicit

Nodal normal contact force dist.

ABAQUS **C3D10MH**

force oscillation except for C3D10MH.

Static
ImplicitContact Press of Bullet

Nodal normal contact force dist.

Same as last, T4 elements including F-barES-FEM-T4 present no contact force oscillation.

Static Implicit

Stretch of Filler-containing Rubber with Remesing

- Several hard circular fillers are distributed in a square soft matrix rubber (neo-Hookean hyperelastic with $v_{ini} = 0.49$).
- E_{ini} of the filler is 100 times larger than E_{ini} of the matrix.
- Left side is constrained and right side is displaced.

Valid Mises stress dist. is obtained after many time remeshings.

Shear-tensioning of Elasto-plastic cylinder with Remeshing

 Aluminium cylinder subjected to enforced disp.

Static

Implicit

- Pure shear at the initial stage, but stretch dominates at the later stage.
- Necking occurs in the end.

Valid plastic strain dist. is obtained after many time remeshings.

Equivalent Plastic Strain 6.00e+00 5.00e+00 4.00e+00 3.00e+00 2.00e+00 1.00e+00 0.00e+00

Final stretch at the neck is more than 7000%.

Summary

Benefits and Drawbacks of F-barES-FEM-T4

<u>Benefits</u>

- Locking-free with 1st order tetra meshes.
 No difficulty in severe strain or contact analysis.
- ✓ No increase in DOF.

Purely displacement-based formulation.

- ✓ No restriction of material constitutive model. Pressure dependent models are acceptable.
- Less corner locking & pressure checkerboarding.

More accurate than Selective ES/NS-FEM!

<u>Drawbacks</u>

The more cyclic smoothing necessitates the more CPU time due to the wider bandwidth.

Slower than Selective ES/NS-FEM...

Take-Home Messages

F-barES-FEM-T4 is the current best T4 FE formulation especially for the large deformation of

- Rubber-like materials,
- •Viscoelastic materials, and
- Elastoplastic materials.

Thank you for your kind attention!

