大変形問題に対する 四面体要素を用いた ロッキングフリー 選択的平滑化有限要素法

<u>大西有希</u>,天谷 賢治 東京工業大学

■柔らかい材料の静的超大変形問題を <u>高精度かつ安定</u>に解きたい. (最終目標:タイヤゴムの大変形, 熱ナノインプリント樹脂成形など)

■メッシュ固定のFEMを使用すると メッシュがすぐに潰れてしまい、解 が得られない.___

メッシュリゾーニング (メッシュを何度 も切り直して計算を続行すること)が 不可欠.

1.0µm

任意の変形状態を持つ領域を良質な四角形要素(2D)お よび六面体要素(3D)でリメッシュすることが出来ない.

三角形要素および四面体要素を使用せざるを得ない.

しかし,標準的な(定ひずみ)三角形要素および四面体要 素は容易に<u>せん断ロッキング</u>および<u>体積ロッキング</u>を引き 起こす為,低精度な解しか得ることが出来ない...

計算工学講演会2014

ロッキング回避のための従来法

■ 高次要素:

▶ 体積ロッキングを回避できない.

中間節点があるため大変形で精度悪化の恐れがある.

■ 拡張ひずみ仮定法(EAS):

🗡 不安定.

- B-bar法, F-bar法, 選択的次数低減積分法:
 メ四面体要素や三角形要素にはそのまま適用できない.
- F-barパッチ法:

🗡 良いパッチを作ることが難しい.

- u/p混合(ハイブリッド)法:
 - ★ 今のところ完全に満足できる定式化が提案されていない. ただし、ほぼ許容出来るものは提案されている. (例:ABAQUS/Standardの「C3D4H」および「C3D10H」)
- 平滑化有限要素法(Smoothed FEM: S-FEM):
 - ?可能性を模索中.(拙著論文(IJNME 2014)を参照)

S-FEMによる解析例(弾塑性体のせん断ネッキング)

and the	Equivalent Plastic Strain 6.00e+00	
	5.00e+00	
	4.00e+00 3.00e+00	25RK
	2.00e+00	
5.725	1.00e+00	

0.00e+00

- ・大変形 ・静的 ・陰解法 ・メッシュ
- リゾーニング

ネックの最終 変形(F_{zz})は 72.9. つまり 7000%超の 公称ひずみ.

研究目的

四面体要素を用いたロッキングフリー選択的平 <u>滑化有限要素法(Selective S-FEM)</u>を開発し、そ の精度検証と改良を行う.

今日はメッシュリゾーニングの話を一時棚上げにします.

- Selective S-FEMの定式化おさらい
- 解析例と問題点の整理
- 問題解決への取り組み(検討中の手法の速報)

● まとめ

Selective S-FEMの定式化おさらい

Edge-based S-FEM (ES-FEM)

- スタンダードなFEMと同様に要素[B]を計算,
- 要素[B]を接するエッジに面積比で分配し、[^{Edge}B]を作成、
- *F, T*, {*f*^{int}} 等をエッジで計算.

概して高精度だが、<u>体積ロッキングを起こす</u>のが欠点

Pursuina Excellence

Node-based S-FEM (NS-FEM)

- スタンダードなFEMと同様に要素[B]を計算,
- 要素[B]を接するノードに面積比で分配し, [^{Node}B]を作成,
- *F, T*, {f^{int}} 等をノードで計算.
 - せん断・体積ロッキングを起こさないが、<u>概して低精度</u>なのが欠点

計算工学講演会2014 P. 9

解析例と問題点の整理

<u>片持ち梁の曲げ解析概要</u>

■ 10m x 1m x 1m の片持ち梁の先端に 20 kNの死荷重
 ■ Neo-Hookean 超弾性体:

$$[T] = 2C_{10} \frac{\operatorname{Dev}(\overline{B})}{J} + \frac{2}{D_1} (J-1)[I].$$

- C₁₀は1 GPa で一定, D₁ を様々に変化.
- ■独自改良版 selective FS/NS-FEM では 9560個の 四面体要素と 2288個の節点を使用.
- 参照解 ABAQUS/Standard では 1250個の C3D20H (六面体2次ハイブリッド要素)と6696個の節点を使用.
- S-FEMそのものの検証の為, メッシュリゾーニングは実施しない.

<u> D₁ = 2 PPa⁻¹ (v₀=0.499999)の時の解析結果</u>

Mises Stress (Pa) 7e+8 6e+8 5e+8 4e+8 3e+8 2e+8 1e+8 0 たわみ量は およそ -6.5 m となった.

なお, この問題を 定ひずみ四面体要素 で解くと, たわみ量は たったの -0.1 m となってしまう.

検証解析例1

<u> 内部エネルギーと外力仕事</u>

内部エネルギーと外力仕事は一致している. ⇒ 純粋に圧力振動のみが生じている.

■ Arruda-Boyce超弾性体(v_{ini} = 0.4999)
 ■ 上面の¼に圧力荷重を負荷

検証解析例2

<u>提案</u> <u>手法</u> での <u>解</u>

<u>結果</u>

<u>角点の垂直変位 vs. 負荷圧</u>

検証解析例2

- 軸方向に50%圧縮.
- Neo Hookean超弹性体C₁₀ = 40 × 10⁶ Pa, D = 5 × 10⁻¹² Pa⁻¹ (i.e., v_{ini} = 0.4999).
- 完全に同一のメッシュ分割で、ABAQUS/StandardのC3D4Hと 結果を比較。

<u>ABAQUSのC3D4Hとの比較</u>

■ 変形形状は互いに酷似している. ■ 提案手法の圧力振動の振幅がC3D4Hの約2倍.

- Selective法の一種であるが故、<u>dev/volカップ</u>
 <u>リング</u>のある材料モデルを扱うことが出来ない、 (C3D4Hはdev/volカップリングも扱える.)
- 2. 微縮性材料の変形解析において変位やMises 応力は高精度に求められるが、 <u>圧力振動</u>が起 こる為に圧力の精度が悪い.
 (C3D4Hも圧力振動はあるが、振幅は半分程度.)
- 角の節点を使用する要素が1つしかない場合、 その節点にはひずみ平滑化がかからないため
 <u>角部がロッキング</u>してしまう. (C3D4Hも同様にロッキングする.)

問題解決への取り組み (検討中の手法の速報)

■基本に戻って、平面ひずみ片持ち梁の曲げ解析 ■Neo-Hookean超弾性体 ■初期ポアソン比は0.4999

<u>Selective S-FEMの解析結果</u>

<u>Mises応力分布</u>

<u>Selective S-FEMの解析結果</u>

<u>Selective S-FEMの解析結果</u>

圧力の符号分布

 $\overline{\mathbf{M}}$

Tokyo Institute of Technology

<u>NS-FEMの解析結果</u>

<u>NS-FEMの解析結果</u>

<u>NS-FEMの解析結果</u>

■平滑化領域をもう少し広げる.

- ■異なる2種類の[B]を使い分ける. すなわち,
 - ●変形勾配Fの計算に用いる[B]
 - ●節点内力{f^{int}}の計算に用いる[B]
 - を別のものにする. (F-bar法に類するアプローチ)

dev/volカップリング, 圧力振動, 角部のロッキング の問題が解決できるか?

検討中の手法概要

検討中の手法の解析結果

検討中の手法の解析結果

- ■まとめ
 - ●四面体/三角形形要素を用いたSelective S-FEMは Locking-FreeだがCheckerboard-Freeではないこ とを検証解析により確認した。
 - ●平滑化領域の工夫,およびF-bar法に類似したBマト リックスの選択等により,<u>S-FEMでCheckerboard-</u> <u>Freeを達成できる可能性がある</u>ことを示した.
- ■今後の予定
 ●検討中の手法の発展.
 ●ハイブリッドS-FEMの検討.

付録

	FS/NS-FEM-T4	ABAQUS/Standard C3D4H, C3D10H
未知数の数	増えない	増える (未定乗数個分)
剛性マトリックスの形	バンド幅が増えるだけ. ポアソン比0.4999程度で あれば反復法で解ける. (良い前処理が見つか ればもっといけるかも.)	未定乗数の式が増える. 性的縮約した方程式は, 恐らく直接法でないと解 きづらい(はず).
微圧縮材料での圧力振動	大きめ	小さめ
扱える材料モデル	Dev/Volカップリングの ない材料	(恐らく)Dev/Volカップリ ングのある材料もOK
複数材料界面の処理	特別な処理は不要	*TIEを用いる必要あり (未知数がさらに増える)
現状の完成度	まだ開発途上. 接触その他の機能も自 ら開発が必要.	完成品. ABAQUSの膨大な機能 が全て使える.
Rホー未八子 Tokyo Institute of Technology	P. 42	TOKYD TIECH Pursuing Excellence

■標準的なFEM1次要素と同じ速度の線形収束.

■非圧縮に近づいても収束速度は同じ.

<u>Newton-Rapthonループの収束速度</u> <u>片持ち梁の曲げ解析(Neo Hookean超弾性体)の</u> 最初の時間ステップにおける収束挙動

