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What is S-FEM?

B Smoothed finite element method (S-FEM) is a relatively
new FE formulation proposed by Prof. G. R. Liu in 2006.

B S-FEM is one of the strain smoothing techniques.

B There are several types of classical S-FEMs depending on
the domains of strain smoothing.

For example in a 2D triangular mesh:

Edge-based S-FEM Node-based S-FEM
(ES-FEM) (NS-FEM)

Standard FEM
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What are the major benefits of S-FEM?

1. Super-linear mesh convergence rate.

(Almost same rate as 2"%-order elements with T4 mesh.)
2. Shear locking free with ES-FEM.

(Excellent accuracy with T4 mesh.)

3. Little accuracy loss with skewed meshes.
(No problem with complex geometry.)

S-FEM is a powerful method

suitable for practical industrial applications.
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How popular is S-FEM?

Number of journal papers whose title contains
“smoothed finite element”:
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L The attraction of S-FEM is expanding continuously. ]
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Applications of S-FEMs in Our Lab

B Solid mechanics (still in academic)

Static Implicit Dynamic Explicit Viscous Implicit
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Pressure

B Electrostatic
(already in practice)
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Motivation
What we want to do:

B Solve severe large deformation
analyses accurately and robustly.

B Treat complex geometries
with tetrahedral meshes.

B Consider nearly incompressible materials (v = 0.5),

B Support contact problems.
B Handle auto re-meshing.

4'}:-,4- S
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Issues (e.g., barreling analysis of rubber cylinder)

With the best

tetrahedral element

in ABAQUS

Neo-Hookean hyperelastic body with v; ; = 0.49
Pressure

T10:
10-node Tetrahedra

2"d order modified hybrid T10 (ABAQUS C3D10MH)

v No shear/volumetric locking
X Short lasting (weak to severe deformation)
X Low interpolation accuracy
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Our Approach (e.g., barreling analysis of rubber cylinder)
Neo-Hookean hyperelastic body with v; ; = 0.49

With the latest
S-FEM tetrahedral
element

Same mesh &
contour range

as

case.
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Latest S-FEM T10 (SelectiveCS-FEM-T10)
v" No shear/volumetric locking

Less pressure checkerboarding
v" Long lasting (robust to severe deformation)
v Same CPU time as T10 elements.
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Selective
CS-FEM-T10
IS much better

than
conventional
tetrahedral
elements in
static analyses.

Y. Onishi,
IJCM,
(2021).

T

Further
evaluation is
necessary in

dynamic analyses.
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Objective

. Development of a dynamic version of
SelectiveCS-FEM-T10

Evaluation of its accuracy and robustness
In severe large deformation dynamic analyses.

Table of Body Contents
> Methods: Formulation of SelectiveCS-FEM-T10

> Results: Demonstrations of SelectiveCS-FEM-T10
>  Summary
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Methods:
Formulation of
SelectiveCS-FEM-T10
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Concepts of SelectiveCS-FEM-T10

B Using T10 element and subdivide it into

T4 sub-elements.
—> Qvercomes the drawbacks of intermediate nodes.

B Adopting intra-element ES-FEM (a kind of CS-FEM)

having no strain smoothing across multiple elements.
— Becomes an independent element of existing FE codes.

B Applying selective reduced integration (SRI).
—> Overcomes volumetric locking.

amm
_____
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Brief Formulation of ES-FEM

Let us consider two 3-node triangular elements in 2D for simplicity.

B Calculate [B](= dN/dx) at each element as usual.

B Distribute each [B] to the connecting with an area weight
and build [ Edgep] .

B Calculate deformation gradient (F), Cauchy stress (o) and nodal
internal force {f1"t} in each

[B1] /
~

As if putting
a Gauss point /

on each edge center / “[Bz]
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Flowchart of SelectiveCS-FEM-T10

Explanation in 2D (6-node triangular element) for simplicity

(2) Iso-vol. strain smoothing at edges

SRI _
(4) {f™™t} and [K]

(1) Radial type
element subdivision
Into sub-elements
with a dummy node

(3) Vol. strain smoothing with all sub-elements
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T10 Element Subdivision in 3D

Radial subdivision (30% shrunk mesh)

There are 16
T4 sub-elements

In total.
Sub-elements
have a little
Strain on larger skewness.
all 34 edges but skewness
are smoothed IS not a big issue
by ES-FEM. for ES-FEM.
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Building Lumped Mass Matrix

Calculate the mass of Schematics
in 2D
each sub-element.

Distribute it to composing
4 nodes.

Each color
denotes the
corresponding
area for mass.

(3 nodes in 2D.)

The mass of the dummy node
is distributed to the connecting
6 mid-nodes.

(3 mid-nodes in 2D.)
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Results:
Demonstration of
SelectiveCS-FEM-T10
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Static

e Tensioning of Rubber-Filler Composite
Outline

N Increasing
y (Lo ~xi>  Displacement
/ in +Z Direction

0.5m ~_ Hyperelastic

Soft Material

Hyperelastic
Hard Material
(1/8 Sphere)

B Soft material: Neo-hookean, E;,; = 6 GPa, v;,; = 0.49.
B Hard material: Neo-hookean, E;,; = 260 GPa, v;p; = 0. 3.
B Discretized into T10 mesh. (about 11,000 nodes and 7,000 elements)

B Compared to ABAQUS C3D10MH, the best T10 element of ABAQUS,
with the same mesh.
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Static
Implicit

Result of |, rressure S g
ABAQUS
C3D10MH
with
pressure
contour
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Convergence

failure at 69%
nominal stretch
(short lasting)
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Static

pum Tensioning of Rubber-Filler Composite

+2.000e+09

Result of oo

e —-6:000e+09
Selective o aserei g
= g-1. e+ ~

CS-FEM-T10 ; 1667010

-1.933e+10

with 2. 467e010

pressure 3.000e410

contour

Convergence
failure at 166%
nominal stretch

(long lasting)
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Static

pem Tensioning of Rubber-Filler Composite

Comparison of pressure dist. at 60% nominal stretch
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SelectiveCS-FEM-T10 ABAQUS C3D10MH

| SelectiveCS-FEM-T10 has good pressure accuracy. ‘
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Static

pum Tensioning of Rubber-Filler Composite
Comparison of M:ses stress d:st at 60% nommal stretch
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Mises Stres_§

SelectiveCS-FEM-T10 ABAQUS C3D10MH

SelectiveCS-FEM-T10 has an issue of Mises stress oscillation,
which should be resolved in the future.
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Static

e Tensioning of Rubber-Filler Composite

—0.01 - S SelectlveCS FEM TlO _
E-002 — ABAQUS C3D10MH _;
>~ —0.03 F ABAQUS -
g -0.04 F C3D10MH E
S _005 E died here. ;
g —0.06 _ \ Selective —
= —0.07 F CS-FEM-T10;
-E -0.08 F died here. 3

~0.09 F \ :

—-0.1 e by b b b b by e b 1T

O 20 40 60 80 100 120 140 160 180
Nominal Stretch (%)

SelectiveCS-FEM-T10 has enough accuracy in displacement
(and force, also) in addition to large deformation robustness.
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Eigen

e Deformation Modes of Armadillo

Outline

B Rubber body.
(Young’s modulus: 5MPa,
Poisson’s ratio: 0.49)

B Discretized in T10 mesh.
(about 80,000 nodes
and 52,000 elements)

B Both soles of the feet are
perfectly constrained.

B Modal analysis up to 40
eigen modes.
(This is not a large deformation analysis.)

B Compared to ABAQUS C3D10MH with the same mesh.
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Eigen

vy Deformation Modes of Armadillo
Eigen modes up to Mode 40 with SelectiveCS-FEM-T10

There are no
unnatural
modes.

SelectiveCS-FEM-T10 has no spurious low-energy modes
like hour-glass modes.
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Eigen

Deformation Modes of Armadillo

Mode
Comparison of eigen frequencies
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SelectiveCS-FEM-T10 has practical accuracy
in modal analyses as ABAQUS C3D10MH; therefore,
SelectiveCS-FEM-T10 would be stable in dynamic analyses.
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Dynamic

el Swing of Bunny Ears

: Iron Ears
Outline / S

Initial Velocity
of Iron Ears

Rubber

/// Body

Fixed
Soles — 7 At = 0.05 us, which is recommended At for C3D10M

B |ron ears: Neo-Hookean, Ej,; = 200 GPa, vi,; = 0.3, p = 7800 kg/m3.
B Rubber body: Neo-Hookean, Ej,; = 6 MPa, v;,; = 0.49, p = 920 kg/m3.
B Discretized into T10 mesh. (about 61,000 nodes and 41,000 elements)

B Compared to ABAQUS/Explicit C3D10M (NOT C3D10MH)
with the same mesh and At.

B Contactis not considered.
= = P. 26
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Dynamic

= Swing of Bunny Ears
Comparison of Mises stress animation

ises Stress
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Time: 37.3 (ms)

SelectiveCS-FEM-T10 ABAQUS C3D10M

SelectiveCS-FEM-T10 has similar accuracy
in displacement and Mises stress
to ABAQUS C3D10M.
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Dynamic

Explicit BEXAALLLE of Bunny Ears
Comparison of pressure sign at t =0.4 ms (right after the stat)

Red: positive pressure
Blue: negative pressure

Clear Unclear
stripe stripe
pattern pattern

Time: 0.4 (ms)

SelectiveCS-FEM-T10 ABAQUS C3D10M

SelectiveCS-FEM-T10 seems to calculate
the initial pressure wave propagation
more correctly than ABAQUS C3D10M.
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iy Swing of Bunny Ears
Timestep-history of total enerqy (= kinetic + strain)
© —m—————————
- — SelectiveCS-FEM-T10 |

A A ]

)
-

N
-]
[
|

Total Energy (J)
N W
S S

[—

-
| T
|

0 1 x 10° 2 x 10°
Timesteps (=0.15)

SelectiveCS-FEM-T10 has enough energetic stability
in dynamic analysis.
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Summary
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Summary

B A new S-FEM was proposed, which is called SelectiveCS-FEM-T10:

® More robust to severe large deformation than the conventional T10s.
® as compared to ABAQUS's best T10.
® Slower than conventional T10s only in dynamic explicit analysis.

B More severe large deformation dynamic analyses should be
performed for evaluation.

Take-home message

If you are interested in large deformation analysis,

please consider implementing SelectiveCS-FEM-T10 to your FE code.
It’s supremely useful & easy to code!!

Thank you for your kind attention! |
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Appendix
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Computational Cost

B n static, modal, dynamic implicit analyses:

® CPU time: almost the same as the standard T10.
~* Time to solve the matrix equation (i.e., [K]{u} = {f})
dominates the CPU time.

® \Memory size: several times larger than the standard T10.
» Memory to store F and o at Gauss points occupies

a main part of the memory size.
SelectiveCS-FEM-T10 has 34 edges. Standard T10 has 4 Gauss Points.

B In dynamic explicit analysis:

® CPU time: several times longer than the standard T10.
+ Time to build internal force vector {f"t} occupies
a main part of the CPU time.

® \iemory size: several times larger than the standard T10.

** Same reason above. Trade-off between robustness and costs
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Dynamic
Explicit

Wave Propagation in a Long Bar

Veilr?z'ty At = 0.1 ms (constant)
B I10OmX1ImX1m.

B Neo-Hookean, Ei,; = 1 MPa, v;,; = 0.49, p = 920 kg/m?.
B Lateral confinement on the sidewalls.

B Discretized into T10 mesh. (about 4,000 nodes and 2,000 elements)

B Compared to analytical solution.
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Dynamic

=4 Wave Propagation in a Long Bar
Animation of pressure

+4.
I

+2.667e+05
.000e+05
.333e+05
.667e+04
.000e+00
.667e+04
.333e+05
.000e+05
.667e+05
.333e+05
.000e+05

L +2
—+1

000e+05
333e+05

Time: 0.018 (s)

| SelectiveCS-FEM-T10 seem to has good pressure accuracy. ‘

B LAY Tokyo Tech

Tokyo Institute of Technology
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Dynamic

=wrd Wave Propagation in a Long Bar
Animation of Mises stress
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Mises Stress

Time: 0.018 (s)

| We need more careful investigation. ‘
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Dynamic

=wrd Wave Propagation in a Long Bar

Time-history of displacement at the right end
1

—_— SelectlveCS FEM T10

0.9
£ 08 — Analytical
> 0.7 Analytical
E 0.6 pressure wave
S 0.5 speed:
5 0.4 [
9 =
T%‘ 8; P
= 0.1

O 0.1 02 03 04 05 06 0.7 08 09 1
Time (S)

SelectiveCS-FEM-T10 has enough accuracy
in 1D pressure wave propagation analysis.
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Dynamic
Explicit

Dynamic Bending of Cantilever
10m

S

m
1 m Neo-Hookean Hyperelastic Material j}

SRR B A

Initial Condition: v, = —5 m/s (uniform)

B Neo-Hookean, Ej,; = 6.0 MPa, v;,; = 0.49, p = 920 kg/m?
B |nitial velocity: v, = —5 m/s for all nodes of cantilever

B Discretized into T10 mesh. (about 4,000 nodes and 2,000 elements)

B Compared to ABAQUS/Explicit C3D10M (NOT C3D10MH)
with the same mesh and At (= 0.1 ms).
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Dynamic

=1 Dynamic Bending of Cantilever
Comparison of animation of Mises stress
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SelectiveCS-FEM-T10/Explicit ABAQUS/Explicit C3D10M

SelectiveCS-FEM-T10 has similar accuracy
in displacement and Mises stress to ABAQUS C3D10M.
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Dynamic

=1 Dynamic Bending of Cantilever
Comparison of animation of pressure
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SelectiveCS-FEM-T10/Explicit ABAQUS/Explicit C3D10M

SelectiveCS-FEM-T10 has similar accuracy
in displacement and pressure to ABAQUS C3D10M.

B TR AR P. 40 . |
%?m%zci IUTAM Symp. 2021 H Tokyo Tech




Dynamic

=1 Dynamic Bending of Cantilever

Comparison of time-history of u, at the tip node
— SelectiveCS-FEM-T10 — ABAQUS C3DI10M
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Displacement in Z, u, (m)

I
o0

25 30
Time, 7 (s)

SelectiveCS-FEM-T10 has similar accuracy
in displacement to ABAQUS C3D10M.
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