yonishi@a.mei.titech.ac.jp

ΤΟΚΥΟ ΤΕCΗ

A Stable Rezoning Method for Large Deformation Finite Element Analysis using Incremental Equilibrium Equation This talk indirectly relates to Particle/Meshfree methods. I beg your patience till the end.

Yuki ONISHI, Kenji AMAYA Tokyo Institute of Technology (Japan)

ICMS2012

Motivation and Background

<u>Motivation</u>

We want to solve **severely large deformation** problems <u>accurately and stably!</u>

(Final target: thermal nanoimprinting)

<u>Background</u>

Finite elements are **distorted** in a short time, thereby resulting in convergence failure.

FE rezoning method (*h*-adaptive mesh-to-mesh solution mapping) is indispensable.

Methods for Forming Simulation

	Software	<u>Accuracy</u>	<u>Stability</u>
One Step Method	HyperForm FASTFORM	\star	****
Dynamic- <mark>Explicit</mark> FE Rezoning	LS-DYNA PAM-STAMP	$\rightarrow \star \star$	$\star \star \star$
Static- <mark>Explicit</mark> FE Rezoning	ASU/P-form	***	**
Static- <i>Implicit</i> FE Rezoning	ABAQUS MARC	****	*
		Most of the rezoning researches try to improve this.	Our approach tries to improve this with a new idea.
▶ 東京工業大学	IC	CMS2012	такуа тесн

P. 3

Pursuina Excellence

<u>`^`</u>

Tokyo Institute of Technology

Objective

Develop an <u>accurate and stable</u> *implicit* FE rezoning method for large deformation problems with a new idea.

New Idea: adopting implicit FE formulation based on the incremental equilibrium equation (IEE)

Table of Body Contents

- ① Derivation of the IEE for static-*implicit* analysis
- ② Formulation of our *implicit* FE rezoning method based on the IEE
- 3 Verification analysis in 2D
- 4) Demonstration analysis in 3D

★ 東京工業大学 Tokyo Institute of Technology

① Derivation of the incremental equilibrium equation (IEE) for static-*implicit* analysis

ICMS2012

Virtual Work Equation in Rate Form

$$\dot{\Pi}_{t}^{T}(t): \delta F_{t}(t) d\Omega$$

$$= \int_{\Gamma(t)} \dot{\underline{t}}_{t}(t) \cdot \delta u \, d\Gamma + \int_{\Omega(t)} \rho \dot{\underline{g}} \cdot \delta u \, d\Omega$$

$$= \int_{\Gamma(t)} \dot{\underline{t}}_{t}(t) \cdot \delta u \, d\Gamma + \int_{\Omega(t)} \rho \dot{\underline{g}} \cdot \delta u \, d\Omega$$

$$\Box_{t}: \text{ Variable in the Current Configuration,}$$

$$\delta \Box: \text{ Variation, } \dot{\Box}: \text{ Material Time Derivative,}$$

$$\Pi: \text{ 1st Piola-Kirchhoff Stress Tensor,}$$

$$F: \text{ Deformation Gradient Tensor,}$$

$$\underline{t}: \text{ Surface Traction Vector,}$$

$$\Omega: \text{ Analysis Domain, } \Gamma: \text{ Domain Boundary,}$$

$$u: \text{ Displacement vector, } \rho: \text{ Density,}$$

Э

 Ω

Linearization and Discretization

$$\int_{\Omega(t)} \dot{\Pi}_{t}^{T}(t) : \delta F_{t}(t) d\Omega$$

$$= \int_{\Gamma(t)} \dot{\underline{t}}_{t}(t) \cdot \delta u \, d\Gamma + \int_{\Omega(t)} \rho \dot{\underline{g}} \cdot \delta u \, d\Omega$$

$$= \int_{\Gamma(t)} \dot{\underline{t}}_{t}(t) \sim \Delta \Pi_{t}^{T}/\Delta t, \quad \dot{\underline{t}}_{t}(t) \simeq \Delta \underline{t}_{t}/\Delta t, \quad \dot{\underline{g}} \simeq \Delta g/\Delta t$$

$$= \int_{\text{CM}} \int_{\Omega(t)} \delta F_{t}(t) \simeq [B_{\text{N}}] \{\delta u\}, \quad \delta u \simeq \{N\} \{\delta u\}$$
Fully Implicit Time Advancing
$$\sum_{e \in \mathbb{E}} \int_{\Omega_{e}^{+}} [B_{\text{N}}^{+}]^{T} \{\Delta \Pi_{t}^{T}\} \, d\Omega$$

$$= \sum_{s \in \mathbb{S}} \int_{\Gamma_{s}^{+}} [N^{+}]^{T} \{\Delta \underline{t}_{t}\} \, d\Gamma + \sum_{e \in \mathbb{R}} \int_{\Omega_{e}^{+}} \rho^{+} [N^{+}]^{T} \{\Delta g\} \, d\Omega$$

$$\stackrel{\text{IMS2012}}{$$

Incremental Equilibrium Equation (IEE)

We use the secondary form in the actual implementation.

Comparison of IEE to Standard EE

$$\begin{aligned} \begin{bmatrix} \text{Standard} \\ \text{Static-Implicit EEI} \end{bmatrix} & \left\{ f^{\text{ext}} \right\} - \left\{ f^{\text{int}} \right\} = \{0\}, \\ & \left\{ f^{\text{ext}} \right\} = \sum_{s \in \mathbb{S}} \int_{\Gamma_s^+} [N^+]^T \{\underline{t}^+\} \, \mathrm{d}\Gamma + \sum_{e \in \mathbb{E}} \int_{\Omega_e^+} \rho^+ [N^+]^T \{g\} \, \mathrm{d}\Omega, \\ & \left\{ f^{\text{int}} \right\} = \sum_{e \in \mathbb{E}} \int_{\Omega_e^+} [B_{\mathrm{L}}^+]^T \{T^+\} \, \mathrm{d}\Omega, \\ & \left\{ df^{\text{int}} \right\} = \sum_{e \in \mathbb{E}} \int_{\Omega_e^+} [B_{\mathrm{L}}^+]^T \{T^+\} \, \mathrm{d}\Gamma + \sum_{e \in \mathbb{E}} \int_{\Omega_e^+} \rho^+ [N^+]^T \{\Delta g\} \, \mathrm{d}\Omega, \\ & \left\{ \Delta f^{\text{ext}} \right\} = \sum_{s \in \mathbb{S}} \int_{\Gamma_s^+} [N^+]^T \{\Delta I_{t}^T\} \, \mathrm{d}\Gamma + \sum_{e \in \mathbb{E}} \int_{\Omega_e^+} \rho^+ [N^+]^T \{\Delta g\} \, \mathrm{d}\Omega, \\ & \left\{ \Delta f^{\text{int}} \right\} = \sum_{e \in \mathbb{E}} \int_{\Omega_e^+} [B_{\mathrm{N}}^+]^T \{\Delta \Pi_t^T\} \, \mathrm{d}\Omega, \\ & \left\{ \Delta f^{\text{int}} \right\} = \sum_{e \in \mathbb{E}} \int_{\Omega_e^+} [B_{\mathrm{N}}^+]^T \{\Delta \Pi_t^T\} \, \mathrm{d}\Omega, \\ & \left\{ \Delta f^{\text{int}} \right\} = \sum_{e \in \mathbb{E}} \int_{\Omega_e^+} [B_{\mathrm{N}}^+]^T \{\Delta \Pi_t^T\} \, \mathrm{d}\Omega, \\ & \left\{ \Delta f^{\text{int}} \right\} = \sum_{e \in \mathbb{E}} \int_{\Omega_e^+} [B_{\mathrm{N}}^+]^T \{\Delta \Pi_t^T\} \, \mathrm{d}\Omega, \\ & \left\{ \Delta f^{\text{int}} \right\} = \sum_{e \in \mathbb{E}} \int_{\Omega_e^+} [B_{\mathrm{N}}^+]^T \{\Delta \Pi_t^T\} \, \mathrm{d}\Omega, \\ & \left\{ \Delta f^{\text{int}} \right\} = \sum_{e \in \mathbb{E}} \int_{\Omega_e^+} [B_{\mathrm{N}}^+]^T \{\Delta \Pi_t^T\} \, \mathrm{d}\Omega, \\ & \left\{ \Delta f^{\text{int}} \right\} = \sum_{e \in \mathbb{E}} \int_{\Omega_e^+} [B_{\mathrm{N}}^+]^T \{\Delta \Pi_t^T\} \, \mathrm{d}\Omega, \\ & \left\{ \Delta f^{\text{int}} \right\} = \sum_{e \in \mathbb{E}} \int_{\Omega_e^+} [B_{\mathrm{N}}^+]^T \{\Delta \Pi_t^T\} \, \mathrm{d}\Omega. \\ & \left\{ \Delta f^{\text{int}} \right\} = \sum_{e \in \mathbb{E}} \int_{\Omega_e^+} [B_{\mathrm{N}}^+]^T \{\Delta \Pi_t^T\} \, \mathrm{d}\Omega. \\ & \left\{ \Delta f^{\text{int}} \right\} = \sum_{e \in \mathbb{E}} \int_{\Omega_e^+} [B_{\mathrm{N}^+}]^T \{\Delta \Pi_t^T\} \, \mathrm{d}\Omega. \\ & \left\{ \Delta f^{\text{int}} \right\} = \sum_{e \in \mathbb{E}} \int_{\Omega_e^+} [B_{\mathrm{N}^+}]^T \{\Delta \Pi_t^T\} \, \mathrm{d}\Omega. \\ & \left\{ \Delta f^{\text{int}} \right\} = \sum_{e \in \mathbb{E}} \int_{\Omega_e^+} [B_{\mathrm{N}^+}]^T \{\Delta \Pi_t^T\} \, \mathrm{d}\Omega. \\ & \left\{ \Delta f^{\text{int}} \right\} = \sum_{e \in \mathbb{E}} \int_{\Omega_e^+} [B_{\mathrm{N}^+}]^T \{\Delta \Pi_t^T\} \, \mathrm{d}\Omega. \\ & \left\{ \Delta f^{\text{int}} \right\} = \sum_{e \in \mathbb{E}} \int_{\Omega_e^+} [B_{\mathrm{N}^+}]^T \{\Delta \Pi_t^T\} \, \mathrm{d}\Omega. \\ & \left\{ \Delta f^{\text{int}} \right\} = \sum_{e \in \mathbb{E}} \int_{\Omega_e^+} [B_{\mathrm{N}^+}]^T \{\Delta \Pi_t^T\} \, \mathrm{d}\Omega. \\ & \left\{ \Delta f^{\text{int}} \right\} = \sum_{e \in \mathbb{E}} \int_{\Omega_e^+} [B_{\mathrm{N}^+}]^T \{\Delta \Pi_t^T\} \, \mathrm{d}\Omega. \\ & \left\{ \Delta f^{\text{int}} \right\} = \sum_{e \in \mathbb{E}} \int_{\Omega_e^+} [B_{\mathrm{N}^+}]^T \{\Delta \Pi_t^T\} \, \mathrm{d}\Omega. \\ & \left\{ \Delta f^{\text{int}} \right\} = \sum_{e \in \mathbb{E}} \int_{\Omega_e^+} [B_{\mathrm{N}^+}]^T \{\Delta \Pi_t^T\} \, \mathrm{d}\Omega. \\ & \left\{ \Delta f^{\text{int}} \right\} = \sum_$$

Pursuing Excellence

<u>۲</u>۸۲

Tokyo Institute of Technology

② Formulation of our *implicit* FE rezoning method based on the IEE

ICMS2012

Conventional Implicit FE Rezoning

Proposed Implicit FE Rezoning

Flowchart of the Proposed Method

- Start of timestep loop
 - Assume initial $\{\Delta u\}$
 - Start of (implicit) Newton-Raphson loop
 - Calculate trial states
 - •Calculate $\{\Delta f^{\text{ext}}\}, \{\Delta f^{\text{int}}\}, \text{and } [K]$
 - Convergence check
 - •Solve $[K]{\delta u} = ({f^{\text{ext}}} + {\Delta f^{\text{ext}}}) ({f^{\text{int}}} + {\Delta f^{\text{int}}})$

•Substitute $\{\Delta u\} + \{\delta u\}$ for $\{\Delta u\}$

- Substitute $\{f^{\text{ext}}\} + \{\Delta f^{\text{ext}}\}$ for $\{f^{\text{ext}}\}$
- Substitute $\{f^{\text{int}}\} + \{\Delta f^{\text{int}}\}$ for $\{f^{\text{int}}\}$
- Update States
- Rezone if necessary

Almost the same as the conventional implicit method except the green parts

Proposed vs. Conventional

	<u>Proposed</u> <i>Implicit</i> FE Rezoning	Conventional <i>Implicit</i> FE Rezoning
Equation to be Solved	IEE	Standard EE
Mapping of f^{ext}	Required	Unnecessary!
Equilibrium after Mapping	YES!	NO
Unique Deformed Shape at a Time	YES!	NO
Convergence Failure in Rezoning Process	NO!	YES

Verification Analysis in 2D

■ Static, 2D Plane-strain condition

- All 1st order triangular elements
- Global rezoning every 10 timesteps (much more frequent than necessary)
- remeshing with ANSYS GAMBIT

Material: Hencky's elastic body

• constitutive equation in total strain form:

$$m{T}=m{C}_{
m L}:m{E}$$

Cauchy Stress \propto Hencky Strain

• constitutive equation in rate form:

$$\overset{\circ}{T}=C_{\mathrm{L}}:D$$

Jaumann Rate of Cauchy Stress << Stretching

•Young's modulus: 1 GPa; Poisson's Ratio: 0.3

- Static, 2D Plane-strain condition
- All 1st order triangular elements
- Global rezoning every 5 timesteps

Material: Neo-Hookean hyperelastic body

• Strain energy density function:

$$U = C_{10}(\bar{I}_1 - 3) + \frac{1}{D_1}(J - 1)^2$$

Constitutive equation in total strain form:

$$\boldsymbol{T} = \frac{2}{J}C_{10}\operatorname{dev}(\bar{\boldsymbol{B}}) + \frac{2}{D_1}(J-1)\boldsymbol{I}$$

• Constitutive equation in strain rate form:

$$\mathring{\boldsymbol{T}} = \boldsymbol{C}_{\mathrm{L}}(\boldsymbol{F}): \boldsymbol{D}$$

where $C \sqcup (F)$ is obtained through a long hand calculation.

• C_{10} =0.172 GPa; D_1 =0.6 GPa⁻¹

ICMS2012 P. 22

0.5 m Disp. (100% Nominal Strain)

Proposed Method (59 Times Rezoning)

Proposed Method (79 Times Rezoning)

 $\overline{\mathcal{M}}$

TOKYD TIECH Pursuing Excellence

Demonstration Analysis in 3D

Tension of 3D Cube

- Static, 3D
 1/8 model of a cube
 - Neo-Hookean hyperelastic body
 - All 1st order tetrahedral elements
 - Global rezoning every 10 timesteps
 - Up to 300% nominal strain

Twist of 3D Cuboid

- Static, 3D
- 1 x 2 x 4 m size
- Henkey's elastic body of v = 0.45
- All 1st order tetrahedral elements
- Global rezoning every 30 degree
- Up to 360 degree rotation

Punching of 3D Cuboid

tetrahedral elements ■ Global rezoning every 10 timesteps

■ All 1st order

■ Static, 3D

1/4 model

2 x 3 x 4 m size

Henkey's elastic

body of $\nu = 0.2$

- radius of punch R = 1 m
- punch up to 1/3 height

Take-Home Messages

- 1. Our method is as **stable** as the *explicit* method and as **accurate** as the *implicit* method.
- 2. The Implicit IEE is useful not only for FE rezoning

but also Meshfree/Particle methods.

See the e-book of <u>PARTICLES2011</u> or our full-paper in <u>Int. J. Numer. Meth. Engng (2012)</u>

in detail.

Summary and Future Work

Summary

- A new *implicit* FE rezoning method for severely large deformation analysis is proposed.
- It solves the IEE instead of the standard EE.
- It maps f^{ext} in addition to the other states.
- Its accuracy and stability are verified.

Future Work

- More V&V
- SFEM implementation
- Apply to contact forming, crack propagation, etc.

Thank you for your kind attention!

Appendix

Tension of 3D Cube

Pursuing Excellence

Tokyo Institute of Technology

Twist of 3D Cuboid

Punching of 3D Cuboid

Mapping of f^{ext}

Boil down to the following minimization problem:

Unknown

nodal f^{ext} on the new mesh surface

Cost Function

 $\sum ||$ {surface traction on the new mesh face}

– {surface traction on the old mesh face} $||^2$

Constraints

- $\sum \{\text{new nodal } f^{\text{ext}}\} = \sum \{\text{old nodal } f^{\text{ext}}\}$
- $\sum \{\text{new nodal } x \times f^{\text{ext}}\} = \sum \{\text{old nodal } x \times f^{\text{ext}}\}$

Solve it with Lagrange multiplier method

Derivation of Stiffness Matrix (1/2)

Relation between $\dot{\Pi}_t$ and \dot{T} : $\dot{\Pi}_t \equiv \dot{T} + tr(L)T - LT$

- Relation between \dot{i} and Jaumann rate: $\dot{T} \equiv \ddot{T} + WT - TW$
- Erasing \dot{T} : $\dot{\Pi}_t^T = \dot{T} + WT - TW + \operatorname{tr}(L)T - TL^T$
- Constitutive equation (e.g. Hencky's):

$$\mathring{\boldsymbol{T}} = \boldsymbol{C}_{\mathrm{L}} : \boldsymbol{D}$$

Erasing \check{T} : $\dot{\Pi}_t^T = C_L : D + WT - TW + tr(L)T - TL^T$

Derivation of Stiffness Matrix (2/2)

Rewrite in matrix form:

 $\{\dot{\Pi}_{t}^{T'}\} = [C_{\mathrm{L}}]\{D\} + [C_{\mathrm{N}}]\{L\}$ where $0 \qquad 0 \qquad -T_{xy} \qquad 0$ $0 \quad T_{xx} \quad T_{xx}$ $-T_{zx}$ $T_{yy} \quad 0 \quad T_{yy} \quad -T_{xy} \qquad 0 \qquad 0 \qquad 0$ 0 $-T_{yz}$ $0 \qquad -T_{zx} \qquad 0$ T_{zz} T_{zz} 0 $-T_{yz}$ 0 0 $T_{xy} \quad 0 \quad T_{xy} \quad \frac{T_{yy} - T_{xx}}{2} \qquad \frac{T_{yz}}{2} \qquad \frac{-T_{yy} - T_{xx}}{2} \qquad \frac{-T_{zx}}{2} \qquad \frac{-T_{yz}}{2}$ $\frac{T_{yz}}{2} \qquad \frac{T_{zz} - T_{xx}}{2} \qquad \frac{-T_{yz}}{2} \qquad \frac{-T_{xy}}{2} \qquad \frac{-T_{zz} - T_{xx}}{2} \qquad \frac{-T_{xy}}{2}$ $[C_{\rm N}] =$ $\begin{vmatrix} T_{zx} & T_{zx} & 0 \end{vmatrix}$ $0 \quad T_{xy} \quad T_{xy} \quad \frac{-T_{yy} - T_{xx}}{2} \qquad \frac{-T_{yz}}{2} \qquad \frac{-T_{yy} + T_{xx}}{2} \qquad \frac{T_{zx}}{2} \qquad \frac{-T_{yz}}{2} \qquad \frac{-T_{yz}}{2}$ $T_{yz} T_{yz} 0 = \frac{-T_{zx}}{2} \frac{-T_{xy}}{2} \frac{T_{zx}}{2} \frac{T_{zz}-T_{yy}}{2} \frac{-T_{xy}}{2} \frac{-T_{zz}-T_{yy}}{2}$ $0 \quad T_{zx} \quad T_{zx} \quad \frac{-T_{yz}}{2} \quad \frac{-T_{zz} - T_{xx}}{2} \quad \frac{-T_{yz}}{2} \quad \frac{-T_{xy}}{2} \quad \frac{-T_{zz} + T_{xx}}{2} \quad \frac{T_{xy}}{2}$ $\begin{vmatrix} T_{yz} & 0 & T_{yz} & \frac{-T_{zx}}{2} & \frac{-T_{xy}}{2} & \frac{-T_{zx}}{2} & \frac{-T_{zz}-T_{yy}}{2} & \frac{T_{xy}}{2} & \frac{-T_{zz}+T_{yy}}{2} \end{vmatrix}$

■ Stiffness Matrix

 $[K^+] = \sum \int_{\Omega^+} [B_{\rm L}^+]^T [C_{\rm L}] [B_{\rm L}^+] + [B_{\rm N}^+]^T [C_{\rm N}] [B_{\rm N}^+] \, \mathrm{d}\Omega$

Characteristics of Meshfree Method

<u>Advantage</u>

- Locking free
- Easy to add/remove nodes

<u>Disadvantage</u>

- High cost to construct a stable shape function
- High cost to correct [B] to satisfy the divergencefree condition
- High cost to treat multiple materials, concave boundaries, contact, etc.

Characteristics of Static-Explicit Method

<u>Advantage</u>

- No convergence calculation
- Solution can stably be obtained (even if there exist no static solution)

<u>Disadvantage</u>

- Equilibrium is not guaranteed due to error accumulation
- Necessitates small Δt with r-min method in plasticity

Comparison of IEE to Stiffness Eq.

[Standard Static-*Explicit* EE]

NOT equilibrium equation BUT stiffness equation without trial values

$$[K]{\Delta u} = {\Delta f^{\text{ext}}}$$
$$\left(= \{f^{\text{ext}}(t + \Delta t)\} - \{f^{\text{int}}(t)\}\right)$$

$$\begin{aligned} \begin{bmatrix} \textit{Implicit} \\ \textit{IEE} \end{bmatrix} \left\{ \Delta f^{\text{ext}}(\boldsymbol{u}^{+}) \right\} &- \left\{ \Delta f^{\text{int}}(\boldsymbol{u}^{+}) \right\} = \{0\}, \\ \{\Delta f^{\text{ext}}\} &= \sum_{s \in \mathbb{S}} \int_{\Gamma_{s}^{+}} [N^{+}]^{T} \{\Delta \underline{t}_{t}\} \, \mathrm{d}\Gamma + \sum_{e \in \mathbb{E}} \int_{\Omega_{e}^{+}} \rho^{+} [N^{+}]^{T} \{\Delta g\} \, \mathrm{d}\Omega, \\ \{\Delta f^{\text{int}}\} &= \sum_{e \in \mathbb{E}} \int_{\Omega_{e}^{+}} [B_{\mathrm{N}}^{+}]^{T} \{\Delta \Pi_{t}^{T}\} \, \mathrm{d}\Omega, \end{aligned}$$

