A large deformation tetrahedral smoothed finite element formulation for nearly incompressible solids based on the strain smoothed element (SSE) technique

<u>Yuki ONISHI</u> (Tokyo Institute of Technology)

What is S-FEM?

- *Smoothed* finite element method (S-FEM) is a relatively new FE formulation proposed by Prof. G. R. Liu in 2006.
- S-FEM is one of the **strain smoothing** techniques.
- There are several types of classical S-FEMs depending on the domains of strain smoothing.
- For example, in a 2D triangular mesh:

CM2022

Tokyo Tech

What are the major benefits of S-FEM?

- Super-linear mesh convergence rate. (Almost same rate as 2nd-order elements with T4 mesh.)
- **2.** Shear locking free with ES-FEM. (Excellent accuracy with T4 mesh.)

T4: 4-node Tetrahedra

Little accuracy loss with skewed meshes.
 (No problem with complex geometry or severe deformation.)

S-FEM is a powerful method suitable for practical industrial applications.

How popular is S-FEM?

Number of journal papers whose **title** contains **"smoothed finite element"**:

The attraction of S-FEM is expanding continuously.

P. 4 ICCM2022

Applications of S-FEM in Our Lab

Large deformation solid mechanics (still in academic)

ICCM2022

Tokvo Institute of Technology

Motivation

What we want to do:

- Solve severe large deformation analyses accurately and robustly.
- Treat complex geometries with tetrahedral meshes.

Consider nearly incompressible materials ($\nu \simeq 0.5$).

6

ICCM2022

- Support contact problems.
- Handle auto re-meshing.

vo Institute of Techno

Issues in Conventional FE (ABAQUS)

Neo-Hookean <u>hyperelastic</u> body with $v_{ini} = 0.49$

ABQUS C3D4H

Tokyo Institute of Technology

- No volumetric locking.
- X Pressure checkerboarding.
- X Shear locking & Corner locking.

ABAQUS C3D10MH

- No shear/volumetric locking.
- X Short lasting (weak to severe deformation).
- X Low interpolation accuracy.

Our Approach using S-FEM

Neo-Hookean <u>hyperelastic</u> body with $v_{ini} = 0.49$

F-barES-FEM-T4 (2017)

- ✓ No shear/volumetric locking.
- Less pressure checkerboarding.
- Less corner locking. Long lasting.
- X Long CPU time. Incompatible w/ FE.

SelectiveCS-FEM-T10 (2021)

- ✓ No shear/volumetric locking.
- Less pressure checkerboarding.
- Less corner locking. Long lasting.
- ✓ Same CPU time. Compatible w/ FE.

Issue in SelectiveCS-FEM-T10

Deviatoric stress oscillation

is observed in some cases...

- e.g.) Tension of filler-rubber composite:
 - A hard iron filler (1/8 sphere)
 - Poisson's ratio of rubber (soft) is 0.49.
- Excellent in robustness.
 Up to 200% stretch!!
- Excellent in nodal displacement/ force and pressure accuracy.
- X Poor in deviatoric stress accuracy.
 Due to the lack of deviatoric strain smooth

Due to the lack of deviatoric strain smoothing?

Can we resolve this issue
by using the approach ofStrain Smoothed Element (SSE),
which adopts multi-smoothing?SSE is
explained
later.東京工業大学
Tokyo Institute of TechnologyP. 9
ICCM2022

Development of a new T10 element formulation "SelectiveCSSE-T10" introducing the concept of SSE to reduce the deviatoric stress oscillation.

Table of contents:

- Method: brief of ES-FEM, SSE, SelectiveCS-FEM-T10, and SelectiveCSSE-T10
- Results: an example of analysis
- Summary

Method

Brief of ES-FEM-T3

Let us consider two 3-node triangular elements in 2D, for simplicity.

- Calculate [B] (= dN/dx) at each element as usual.
- Distribute each [B] to the connecting edge with an area weight and build [EdgeB].
- Calculate deformation gradient (F), Cauchy stress (σ) and nodal internal force {f^{int}} in each edge smoothing domain with [^{Edge}B].

Brief of SSE-T3

Let us consider four 3-node triangular elements in 2D, for simplicity.

- Calculate [B] (= dN/dx) at each element as usual.
- Calculate $[E^{dge}B]$ at each edge in the same way as ES-FEM-T3.
- Distribute each [^{Edge}B] to the three Gauss points with an equal weight and build [^{Gaus}B].

ICCM2022

Calculate $F, \sigma, \{f^{\text{int}}\}$ etc. with $[G^{aus}B]$ s in the same way as FEM-T6.

Strain smoothing is performed twice before evaluating the stress/strain. Linear stress/strain in an element.

No shear locking.

Faster rate of mesh convergence.

Performance of SSE-T3

Comparison of Mises stress dist. in cantilever bending analysis

FEM-T3		Step-like stress dist. (poor).Shear locking.
SSE		Linear stress dist. (good).No shear locking.
EC-SSE		Linear stress dist. (fine).No shear locking.
Analytic T	Jinsong <i>et al.</i> Euro J. Mech /A v95 2022	 But, ➤ SSE has volumetric locking. ➤ SSE cannot be implemented as an element of standard FE codes.
▲ 東京	京工業大学 P. 14 P. 14	Tolyo Toch
	nstitute of Technology ICCM2022	

Brief of SelectiveCS-FEM-T10 (Old)

Explanation in 2D (6-node triangular element), for simplicity

(3) Vol. strain smoothing with all sub-elements

Brief of SelectiveCSSE-T10 (New)

Explanation in 2D (6-node triangular element), for simplicity

(3) Vol. strain smoothing with all sub-elements

ICCM2022

Tokyo Tech

Brief of SelectiveCSSE-T10 in 3D

Radial subdivision of a T10 element (30% shrunk mesh)

There are 16 T4 sub-elements in total. 1st strain smoothing on 34 edges (ES-FEM).

Tokyo Institute of Technology

ICCM2022

2nd strain smoothing on 64 Gauss points (SSE).

Results

Static Implicit Tension of Filler-Rubber Composite

- Filler: Neo-Hookean hyperelastic ($E_{ini} = 260 \text{ GPa}, \nu_{ini} = 0.3$)
- Rubber: Neo-Hookean hyperelastic ($E_{ini} = 6 \text{ GPa}, \nu_{ini} = 0.49$)

19

ICCM2022

Tokyo Tech

T10 mesh (about 11,000 nodes & 7,000 elements)

Tokyo Institute of Technology

Compared to ABAQUS C3D10MH (the best T10 element in ABAQUS) with the same mesh.

Static **Tension of Filler-Rubber Composite** Implicit

failure

at ~70%

stretch.

Static Implicit Tension of Filler-Rubber Composite

Pressure

Convergence failure at ~100% stretch. ↓ Less robust compared to Selective CS-FEM-T10 (up tp 200% stretch.)

Static Implicit Tension of Filler-Rubber Composite

Stress

Mises

The issue of deviatoric stress oscillation was hardly solved...

Static
ImplicitTension of Filler-Rubber Composite

Comparison of pressure dist. at 60% stretch.

SelectiveCSSE-T10 has sufficient accuracy in displacement/force and pressure.

Static
ImplicitTension of Filler-Rubber Composite

Comparison of Mises stress dist. at 60% stretch

SelectiveCSSE-T10 resolves the oscillation issue only a little bit. Unfortunately, there is no fundamental improvement...

Static
ImplicitTension of Filler-Rubber Composite

<u>Mises stress</u> <u>Dist. of</u> <u>SelectiveCSSE-T10</u> at 60% stretch

ICCM2022

Mises stress dist. is severely discontinuous at the element interfaces. ↓ This issue may be unavoidable as long as CS-FEM is adopted... (Strain smoothing across elements would be essential?)

Summary

Summary

- A new CS-FEM formulation, SelectiveCSSE-T10, was developed.
- SelectiveCSSE-T10 introduces the idea of the strain smoothing element (SSE) to our conventional method (SelectiveCS-FEM-T10) to resolve the issue of deviatoric stress oscillation.
- Unfortunately, SelectiveCSSE-T10 cannot resolve the oscillation issue fundamentally...
- Another approach should be taken to achieve a volumetric lockingfree SSE formulation, which is our future work.

Thank you for your kind attention!

Appendix

Static Implicit Tension of Filler-Rubber Composite

