Explicit Dynamic Analysis using SelectiveCS-FEM-T10 with Radial Element Subdivision

<u>Yuki ONISHI</u> (Tokyo Institute of Technology)

Applications of S-FEMs in Our Lab

Large deformation solid mechanics (still in academic)

eICCM2021

Tokyo Institute of Technology

Motivation

What we want to do:

- Solve severe large deformation analyses accurately and robustly.
- Treat complex geometries with tetrahedral meshes.

- Consider nearly incompressible materials ($\nu \simeq 0.5$).
- Support contact problems.
- Handle auto re-meshing.

vo Institute of Techno

Issues (e.g., barreling analysis of rubber cylinder)

eICCM2021

Tokyo Institute of Technology

Our Approach (e.g., barreling analysis of rubber cylinder)

Neo-Hookean <u>hyperelastic</u> body with $v_{ini} = 0.49$ +1.000e+10 +8.917e+09 +7.833e+09 Selective +6.750e+09 +5.667e+09 CS-FEM-T10 +4.583e+09 With the our latest +3.500e+09 +2.417e+09 is much better S-FEM tetrahedral 1.333e+09 +2.500e+08 than -8.333e+08 element -1.917e+09 3.000e+09 conventional tetrahedral elements in Same mesh & static analyses. contour range as C3D10MH Y. Onishi, IJCM. case. (2021). Latest S-FEM T10 (SelectiveCS-FEM-T10) **Further** No shear/volumetric locking evaluation is Less pressure checkerboarding necessary in Long lasting (robust to severe deformation) dynamic analyses. Same CPU time as T10 elements. Tokyo Tech

eICCM2021

Tokyo Institute of Technology

Objective

- 1. Development of a dynamic version of SelectiveCS-FEM-T10
- 2. Evaluation of its accuracy and robustness in dynamic severe large deformation analyses.

Table of Body Contents

- Methods: Formulation of SelectiveCS-FEM-T10
- Results: Demonstrations of SelectiveCS-FEM-T10
- Summary

Methods: Formulation of SelectiveCS-FEM-T10

Concepts of SelectiveCS-FEM-T10

Using T10 element and subdivide it into T4 sub-elements.

 \Rightarrow Overcomes the drawbacks of intermediate nodes.

 Adopting intra-element ES-FEM (a kind of CS-FEM) having no strain smoothing across multiple elements.
 ⇒ Becomes an independent element of existing FE codes.

Applying selective reduced integration (SRI).
Overcomes volumetric locking.

°CM2021

Brief Formulation of ES-FEM

Let us consider two 3-node triangular elements in 2D for simplicity.

- Calculate [B] (= dN/dx) at each element as usual.
- Distribute each [B] to the connecting edge with an area weight and build [EdgeB].
- Calculate deformation gradient (F), Cauchy stress (σ) and nodal internal force {f^{int}} in each edge smoothing domain.

Flowchart of SelectiveCS-FEM-T10

Explanation in 2D (6-node triangular element) for simplicity

(3) Vol. strain smoothing with all sub-elements

Tokyo Tech

T10 Element Subdivision in 3D

Radial subdivision (30% shrunk mesh)

There are 16 T4 sub-elements in total.

Sub-elements have a little larger skewness.

but skewness is not a big issue for ES-FEM.

Strain on

all 34 edges

by ES-FEM.

are smoothed

Building Lumped Mass Matrix

1. Calculate the mass of each sub-element.

Distribute it to composing 4 nodes.

(3 nodes in 2D.)

3. The mass of the dummy node is distributed to the connecting 6 mid-nodes.

okvo Institute of Technolog

(3 mid-nodes in 2D.)

eICCM2021

Results: Demonstration of SelectiveCS-FEM-T10

- Soft material: Neo-hookean, $E_{ini} = 6$ GPa, $v_{ini} = 0.49$.
- Hard material: Neo-hookean, $E_{ini} = 260$ GPa, $\nu_{ini} = 0.3$.
- Discretized into T10 mesh. (about 11,000 nodes and 7,000 elements)
- Compared to ABAQUS C3D10MH, the best T10 element of ABAQUS, with the same mesh.

eICCM2021

Tokyo Tech

S, Pressure (Avg: 75%) 2.348e+09 2.000e+09 667e+08 667e+09 500e+09 5.333e+09 .167e+09 000e+09 3e+10 267e+10 .450e+10 1.633e+10 1.817e+10 2.000e+10 2.190e+10

Step: Step-1 Frame: 34 Total Time: 34.000000

> Convergence failure at 69% nominal stretch (short lasting)

<u>Result of</u> <u>Selective</u> <u>CS-FEM-T10</u> <u>with</u> <u>pressure</u>

Pressure

<u>contour</u>

+2.000e+09 -6.667e+08 3.333e+09 -6.000e+09 -8.667e+09 1.133e+10 -1.400e+10 -1.667e+10 1.933e+10 2.200e+10 2.467e+10 2.733e+10 3.000e+10

Convergence failure at 166% nominal stretch (long lasting)

Comparison of pressure dist. at 60% nominal stretch

Comparison of Mises stress dist. at 60% nominal stretch

SelectiveCS-FEM-T10 has an issue of Mises stress oscillation, which should be resolved in the future.

<u>Comparison of history of u_x at the bottom corner</u>

SelectiveCS-FEM-T10 has enough accuracy in displacement (and force, also) in addition to large deformation robustness.

▲X

Eigen Mode **Deformation Modes of Armadillo**

<u>Outline</u>

- Rubber body.
 (Young's modulus: 5MPa, Poisson's ratio: 0.49)
- Discretized in T10 mesh.
 (about 80,000 nodes and 52,000 elements)
- Both soles of the feet are perfectly constrained.
- Modal analysis up to 40 eigen modes. (This is not a large deformation analysis.)

Deformation Modes of Armadillo

Eigen modes up to Mode 40 with SelectiveCS-FEM-T10

There are no unnatural modes.

SelectiveCS-FEM-T10 has no spurious low-energy modes like hour-glass modes.

Mode Deformation Modes of Armadillo

Comparison of eigen frequencies

Tokvo Institute of Technolog

SelectiveCS-FEM-T10 has practical accuracy in modal analyses as ABAQUS C3D10MH; therefore, SelectiveCS-FEM-T10 would be stable in dynamic analyses.

P 22

eICCM2021

Tokyo Tech

Dynamic Explicit Dynamic Bending of Cantilever

- Neo-Hookean, $E_{ini} = 6.0 \text{ MPa}$, $v_{ini} = 0.49$, $\rho = 920 \text{ kg/m}^3$
- Initial velocity: $v_z = -5 \text{ m/s}$ for all nodes of cantilever
- Discretized into T10 mesh. (about 4,000 nodes and 2,000 elements)
- Compared to ABAQUS/Explicit C3D10M (NOT C3D10MH) with the same mesh and Δt (= 0.1 ms).

Dynamic Explicit Dynamic Bending of Cantilever

Comparison of animation of Mises stress

Dynamic Explicit Dynamic Bending of Cantilever

Comparison of animation of pressure

SelectiveCS-FEM-T10 has similar accuracy in displacement to ABAQUS C3D10M.

Dynamic Explicit Swing of Bunny Ears

- Iron ears: Neo-Hookean, $E_{ini} = 200 \text{ GPa}$, $v_{ini} = 0.3$, $\rho = 7800 \text{ kg/m}^3$.
- **Rubber body: Neo-Hookean,** $E_{ini} = 6$ MPa, $\nu_{ini} = 0.49$, $\rho = 920$ kg/m³.

eICCM2021

Tokyo Tech

- Discretized into T10 mesh. (about 61,000 nodes and 41,000 elements)
- Compared to ABAQUS/Explicit C3D10M (NOT C3D10MH) with the same mesh and Δt .
- Contact is not considered.

Explicit Swing of Bunny Ears

Comparison of Mises stress animation

SelectiveCS-FEM-T10/Explicit

ABAQUS/Explicit C3D10M

SelectiveCS-FEM-T10 has similar accuracy in displacement and Mises stress to ABAQUS C3D10M.

Explicit Swing of Bunny Ears

Comparison of pressure sign at t = 0.4 ms (right after the stat)

SelectiveCS-FEM-T10/Explicit

ABAQUS/Explicit C3D10M

SelectiveCS-FEM-T10 seems to calculate the initial pressure wave propagation more correctly than ABAQUS C3D10M.

Dynamic Explicit Swing of Bunny Ears

<u>Timestep-history of total energy (= kinetic + strain)</u>

SelectiveCS-FEM-T10 has enough energetic stability in dynamic analysis.

Summary

Summary

<u>Summary</u>

- A new SelectiveCS-FEM-T10 was proposed, which is:
 - More robust to severe large deformation than the conventional T10s.
 - Enough accuracy for practical use as compared to ABAQUS's best T10.
 - Slower than conventional T10s only in dynamic explicit analysis.
- More severe large deformation dynamic analyses should be performed for evaluation.

<u> Take-home message</u>

If you are interested in large deformation analysis,

please consider implementing SelectiveCS-FEM-T10 to your FE code. It's supremely useful & easy to code!!

Thank you for your kind attention!

Appendix

Characteristics of SelectiveCS-FEM-T10

<u>Benefits</u>

- Accurate (no locking, no checkerboarding, no force oscillation).
- Robust (long-lasting in large deformation).
- ✓ No increase in DOF (No static condensation).
- Same CPU costs as the other T10 elements (except explicit analyses).
- ✓ Implementable to commercial FE codes (e.g., ABAQUS UEL).

<u>Drawbacks</u>

- X Mises stress oscillation in some extreme analyses.
- X Several times larger memory size than other T10 elements.
- X No longer a T4 formulation.

SelectiveCS-FEM-T10 is competitive with the best ABAQUS T10 element, C3D10MH.

T10 Element Subdivision in 3D

Natural subdivision (30% shrunk mesh)

Each frame edge is owned by only one sub-element. There are 12 sub-elements in total.

Strain on frame edges are NOT smoothed by ES-FEM.

Brief of Cell-based S-FEM (CS-FEM)

- Subdivide each element into some sub-element.
- Calculate [^{SubE}B] at each sub-element.
- Calculate $F, T, \{f^{\text{int}}\}$ etc. in each sub-element.

Issues

Conventional tetrahedral (T4/T10) FE formulations still have issues in accuracy and/or robustness especially in nearly incompressible cases.

- <u>2nd or higher order elements:</u>
 - X Volumetric locking. Accuracy loss in large strain.
- B-bar/F-bar method, Selective reduced integration (SRI):
 - X Not applicable to tetrahedral element directly.
- F-bar-Patch method:

okvo Institute of Technolog

- X Difficulty in building good-quality patches.
- u/p mixed (hybrid) method (ABAQUS C3D10MH etc.):
 - **X** Early convergence failure. Accuracy loss in large strain.
- F-bar aided ES-FEM-T4 [Y.Onishi, IJNME, 109 (2017)]:
 - ✓ Accurate & robust X Hard to implement in FEM codes.
- SelectiveCS-FEM-T10 [Y.Onishi, IJCM, 17 (2020)]:

Accurate, robust & easy to implement. X Not yet optimal.

eICCM2021

Tokyo Tech

Issues in Barreling Analysis of Rubber Cylinder

Neo-Hookean <u>hyperelastic</u> body with $v_{ini} = 0.49$

Same mesh as C3D4H case.

Vol. 109 (2017).

Although F-barES-FEM-T4 is accurate and robust, it cosumes larger X memory & CPU costs.

× it cannot be implemented in general-purpose FE software due to the adoption of ES-FEM.

Another approach adopting CS-FEM with T10 element would be effective.

