Explicit Dynamic Analysis
using SelectiveCS-FEM-T10

with Radial Element Subdivision

Yuki ONISHI
(Tokyo Institute of Technology)

P.1
eICCM2021 Tokyo Tech



Applications of S-FEMs in Our Lab

B Large deformation solid mechanics (still in academic)
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Electro Deposition

B Electrostatic
(already in practice)

» 64 CPUs (512 cores)
» MPI/OpenMP hybrid
» 140M elements
» 2000 timesteps

» 18.5 h wall time
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Motivation
What we want to do:

B Solve severe large deformation
analyses accurately and robustly.

B Treat complex geometries
with tetrahedral meshes.

B Consider nearly incompressible materials (v = 0.5),

B Support contact problems.
B Handle auto re-meshing.
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Issues (e.g., barreling analysis of rubber cylinder)

With the best

tetrahedral element

in ABAQUS

Neo-Hookean hyperelastic body with v; ; = 0.49
Pressure

T10:
10-node Tetrahedra

2"d order modified hybrid T10 (ABAQUS C3D10MH)

v No shear/volumetric locking
X Short lasting (weak to severe deformation)
X Low interpolation accuracy

I = P. 4 .
?Eiy‘?“%jfi eICCM2021 H Tokyo Tech



Our Approach (e.g., barreling analysis of rubber cylinder)
Neo-Hookean hyperelastic body with v; ; = 0.49
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With the our latest
S-FEM tetrahedral
element

Same mesh &
contour range
as C3D10MH
case.

Latest S-FEM T10 (SelectiveCS-FEM-T10)
v" No shear/volumetric locking

Less pressure checkerboarding
v" Long lasting (robust to severe deformation)
v Same CPU time as T10 elements.

Selective
CS-FEM-T10
IS much better

than
conventional
tetrahedral
elements in
static analyses.

Y. Onishi,
IJCM,
(2021).

T

Further
evaluation is
necessary in

dynamic analyses.
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Objective

. Development of a dynamic version of
SelectiveCS-FEM-T10

Evaluation of its accuracy and robustness
In dynamic severe large deformation analyses.

Table of Body Contents
> Methods: Formulation of SelectiveCS-FEM-T10

> Results: Demonstrations of SelectiveCS-FEM-T10
>  Summary
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Methods:
Formulation of
SelectiveCS-FEM-T10
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Concepts of SelectiveCS-FEM-T10

B Using T10 element and subdivide it into

T4 sub-elements.
—> Qvercomes the drawbacks of intermediate nodes.

B Adopting intra-element ES-FEM (a kind of CS-FEM)

having no strain smoothing across multiple elements.
— Becomes an independent element of existing FE codes.

B Applying selective reduced integration (SRI).
—> Overcomes volumetric locking.

amm
_____
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Brief Formulation of ES-FEM

Let us consider two 3-node triangular elements in 2D for simplicity.

B Calculate [B](= dN/dx) at each element as usual.

B Distribute each [B] to the connecting with an area weight
and build [ Edgep] .

B Calculate deformation gradient (F), Cauchy stress (o) and nodal
internal force {f1"t} in each

[B1] /
~

As if putting
a Gauss point /

on each edge center / “[Bz]
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Flowchart of SelectiveCS-FEM-T10

Explanation in 2D (6-node triangular element) for simplicity

(2) Iso-vol. strain smoothing at edges

SRI _
(4) {f™™t} and [K]

(1) Radial type
element subdivision
Into sub-elements
with a dummy node

(3) Vol. strain smoothing with all sub-elements
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T10 Element Subdivision in 3D

Radial subdivision (30% shrunk mesh)

There are 16
T4 sub-elements

In total.
Sub-elements
have a little
Strain on larger skewness.
all 34 edges but skewness
are smoothed IS not a big issue
by ES-FEM. for ES-FEM.

By T g P11 I
?Eiy‘?“%jf@ eICCM2021 H Tokyo Tech



Building Lumped Mass Matrix

Calculate the mass of Schematics
in 2D
each sub-element.

Distribute it to composing
4 nodes.

Each color
denotes the
corresponding
area for mass.

(3 nodes in 2D.)

The mass of the dummy node
is distributed to the connecting
6 mid-nodes.

(3 mid-nodes in 2D.)
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Results:
Demonstration of
SelectiveCS-FEM-T10
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Static

e Tensioning of Rubber-Filler Composite
Outline

N Increasing
y (Lo ~xi>  Displacement
/ in +Z Direction

0.5m ~_ Hyperelastic

Soft Material

Hyperelastic
Hard Material
(1/8 Sphere)

B Soft material: Neo-hookean, E;,; = 6 GPa, v;,; = 0.49.
B Hard material: Neo-hookean, E;,; = 260 GPa, v;p; = 0. 3.
B Discretized into T10 mesh. (about 11,000 nodes and 7,000 elements)

B Compared to ABAQUS C3D10MH, the best T10 element of ABAQUS,
with the same mesh.
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Static
Implicit

Tensioning of Rubber-Filler Composite

Result of thvg: 75%)
ABAQUS | s -
C3D10MH | = i
with
pressure
contour
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Convergence

failure at 69%
nominal stretch
(short lasting)
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Static

pum Tensioning of Rubber-Filler Composite
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Result of oo

e —-6:000e+09
Selective o aserei g
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CS-FEM-T10 ; 1667010

-1.933e+10

with 2. 467e010

pressure 3.000e410

contour

Convergence
failure at 166%
nominal stretch

(long lasting)
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Static

pem Tensioning of Rubber-Filler Composite

Comparison of pressure dist. at 60% nominal stretch
[*z oo - e =y
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SelectiveCS-FEM-T10 ABAQUS C3D10MH

| SelectiveCS-FEM-T10 has good pressure accuracy. ‘
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Static

pum Tensioning of Rubber-Filler Composite
Comparison of M:ses stress d:st at 60% nommal stretch
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Mises Stres_§

SelectiveCS-FEM-T10 ABAQUS C3D10MH

SelectiveCS-FEM-T10 has an issue of Mises stress oscillation,
which should be resolved in the future.
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Static

e Tensioning of Rubber-Filler Composite

—0.01 - S SelectlveCS FEM TlO _
E-002 — ABAQUS C3D10MH _;
>~ —0.03 F ABAQUS -
g -0.04 F C3D10MH E
S _005 E died here. ;
g —0.06 _ \ Selective —
= —0.07 F CS-FEM-T10;
-E -0.08 F died here. 3

~0.09 F \ :

—-0.1 e by b b b b by e b 1T

O 20 40 60 80 100 120 140 160 180
Nominal Stretch (%)

SelectiveCS-FEM-T10 has enough accuracy in displacement
(and force, also) in addition to large deformation robustness.
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Eigen

e Deformation Modes of Armadillo

Outline

B Rubber body.
(Young’s modulus: 5MPa,
Poisson’s ratio: 0.49)

B Discretized in T10 mesh.
(about 80,000 nodes
and 52,000 elements)

B Both soles of the feet are
perfectly constrained.

B Modal analysis up to 40
eigen modes.
(This is not a large deformation analysis.)

B Compared to ABAQUS C3D10MH with the same mesh.
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Eigen

vy Deformation Modes of Armadillo
Eigen modes up to Mode 40 with SelectiveCS-FEM-T10

There are no
unnatural
modes.

SelectiveCS-FEM-T10 has no spurious low-energy modes
like hour-glass modes.
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Eigen

Deformation Modes of Armadillo

Mode
Comparison of eigen frequencies
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SelectiveCS-FEM-T10 has practical accuracy
in modal analyses as ABAQUS C3D10MH; therefore,
SelectiveCS-FEM-T10 would be stable in dynamic analyses.
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Dynamic
Explicit

Dynamic Bending of Cantilever
10m

S

m
1 m Neo-Hookean Hyperelastic Material j}

SRR B A

Initial Condition: v, = —5 m/s (uniform)

B Neo-Hookean, Ej,; = 6.0 MPa, v;,; = 0.49, p = 920 kg/m?
B |nitial velocity: v, = —5 m/s for all nodes of cantilever

B Discretized into T10 mesh. (about 4,000 nodes and 2,000 elements)

B Compared to ABAQUS/Explicit C3D10M (NOT C3D10MH)
with the same mesh and At (= 0.1 ms).
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Dynamic

=1 Dynamic Bending of Cantilever
Comparison of animation of Mises stress
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SelectiveCS-FEM-T10/Explicit ABAQUS/Explicit C3D10M

SelectiveCS-FEM-T10 has similar accuracy
in displacement and Mises stress to ABAQUS C3D10M.
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Dynamic

=1 Dynamic Bending of Cantilever
Comparison of animation of pressure

+2.000e+05 Step: Step-1 Frame: 19
+1.667e+05 S, Pressure Total Time: 1.900100
—+1.333e+05 {(Avg: 75%)
—+1.000e+05 +§ ! g;gﬁgg
+2. e+
8 —+6.667e+04 +1. 6676405
= —+3.333e+04 :i.ggge:gg
¢ e
% +0.000e+00 +6.6676+04
8 -3.333e+04 +g.gize+gg
- u e.
A -6.667e+04 13 3330404
|—1.000e+05 -g.gggﬁgg
-1. e+
-1.333e+05 21.333e+05
-1.667e+05 -1.667e+05
-2.000e+05
-2.000e+05 12 4526408

Time: 1.9 (ms)
SelectiveCS-FEM-T10/Explicit ABAQUS/Explicit C3D10M

SelectiveCS-FEM-T10 has similar accuracy
in displacement and pressure to ABAQUS C3D10M.
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Dynamic

=1 Dynamic Bending of Cantilever
Comparison of time-history of u, at the tip node

— SelectiveCS-FEM-T10 — ABAQUS C3DI10M
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SelectiveCS-FEM-T10 has similar accuracy
in displacement to ABAQUS C3D10M.
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Dynamic

el Swing of Bunny Ears

: Iron Ears
Outline / S

Initial Velocity
of Iron Ears

Rubber

/// Body

Fixed
Soles — 7 At = 0.05 us, which is recommended At for C3D10M

B |ron ears: Neo-Hookean, Ej,; = 200 GPa, vi,; = 0.3, p = 7800 kg/m3.
B Rubber body: Neo-Hookean, Ej,; = 6 MPa, v;,; = 0.49, p = 920 kg/m3.
B Discretized into T10 mesh. (about 61,000 nodes and 41,000 elements)

B Compared to ABAQUS/Explicit C3D10M (NOT C3D10MH)
with the same mesh and At.

B Contactis not considered.
L o P. 27
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Dynamic

= Swing of Bunny Ears
Comparison of Mises stress animation

ises Stress
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SelectiveCS-FEM-T10/Explicit ABAQUS/Explicit C3D10M

SelectiveCS-FEM-T10 has similar accuracy
in displacement and Mises stress
to ABAQUS C3D10M.
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Dynamic

=ura Swing of Bunny Ears
Comparison of pressure sign at t = 0.4 ms (right after the stat)

Red: positive pressure
Blue: negative pressure

Clear Unclear
stripe stripe
pattern pattern

Time: 0.4 (ms)

SelectiveCS-FEM-T10/Explicit ABAQUS/Explicit C3D10M

SelectiveCS-FEM-T10 seems to calculate
the initial pressure wave propagation
more correctly than ABAQUS C3D10M.
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iy Swing of Bunny Ears
Timestep-history of total enerqy (= kinetic + strain)
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Timesteps (=0.15)

SelectiveCS-FEM-T10 has enough energetic stability
in dynamic analysis.
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Summary
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Summary

B A new SelectiveCS-FEM-T10 was proposed, which is:

® More robust to severe large deformation than the conventional T10s.
® as compared to ABAQUS's best T10.
® Slower than conventional T10s only in dynamic explicit analysis.

B More severe large deformation dynamic analyses should be
performed for evaluation.

Take-home message

If you are interested in large deformation analysis,

please consider implementing SelectiveCS-FEM-T10 to your FE code.
It’s supremely useful & easy to code!!

Thank you for your kind attention! |
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Appendix
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Characteristics of SelectiveCS-FEM-T10

Benefits

v Accurate (no locking, no checkerboarding, no force oscillation).
v’ Robust (long-lasting in large deformation).
v No increase in DOF (No static condensation).

v' Same CPU costs as the other T10 elements
(except explicit analyses).

v" Implementable to commercial FE codes (e.g., ABAQUS UEL).
Drawbacks

X Mises stress oscillation in some extreme analyses.
X Several times larger memory size than other T10 elements.
X No longer a T4 formulation.

SelectiveCS-FEM-T10 is competitive
with the best ABAQUS T10 element, C3D10MH.
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T10 Element Subdivision in 3D

Natural subdivision (30% shrunk mesh)

Each frame edge There are
IS owned by only 12 sub-elements
one sub-element. in total.

Strain on
frame edges
are NOT
smoothed
by ES-FEM.
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Brief of Cell-based S-FEM (

B Subdivide each element into some sub-element
B Calculate [ SUPER] at each sub-element.

As if puttin
A T PUEng AR
an integration point ATERIRNY ERRANIT A S oeeN
R
ARTESRRTEAREC SRR SINNTY
AN P P AP P ]

on €ac h Su b -€ I eme nt o B P A A Pt o ]

A B
ARTIINTISS: 4
;ﬂ%ﬁ%ﬁ%ﬁ%ﬁ%ﬁr\

5 A AR PPN

[SubCellB]
V The biggest advantage
of CS-FEM is its

SubCell -
y portability to existing
FE codes.

(Y
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Conventional tetrahedral (T4/T10) FE formulations
still have Issues In accuracy and/or robustness
especially in nearly incompressible cases.
B 2" or higher order elements:
X Volumetric locking. Accuracy loss in large strain.
B B-bar/F-bar method, Selective reduced integration (SRI):
X Not applicable to tetrahedral element directly.
B F-bar-Patch method:
X Difficulty in building good-quality patches.
B u/p mixed (hybrid) method (ABAQUS etc.):
X Early convergence failure. Accuracy loss in large strain.
B F-bar aided ES-FEM-T4 [Y.Onishi, INME, 109 (2017)] :
v’ Accurate & robust X Hard to implement in FEM codes.
B SelectiveCS-FEM-T10 [Y.Onishi, IICM, 17 (2020)]
v’ Accurate, robust & easy to implement. X Not yet optimal.
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Issues in Barreling Analysis of Rubber Cylinder
Neo-Hookean hyperelastic body with v; . = 0.49
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Pressure

Same mesh B
as
case.

F-barES-FEM-T4

v" No shear/volumetric locking
v" No corner locking
Y. Onishi, IMNE, v" No pressure checkerboarding
Vol. 109 (2017). v No increase in DOF

Although
F-barES-FEM-T4 is
accurate and robust,

X it cosumes larger
memory & CPU
costs.

X it cannot be
implemented in
general-purpose
FE software due
to the adoption of
ES-FEM.

L

Another approach
adopting CS-FEM
with T10 element
would be effective.

Tokyo Tech
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