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Motivation

Motivation

We want to accurately and stably analyze severe large
deformation of solids in any shape with finite elements.

Issues

® Only tetra mesh is available for arbitrary body shape.

® The standard 1st/ 2nd order tetrahedral element are poor
especially when IS present. Also, all the
other u/p hybrid tetrahedral elements (e.g., C3D4H,
C3D10MH in ABAQUS) have some issues:
O pressure oscillation,
O early convergence failure, etc.

Researches on FE formulations for 1t order tetra (T4) are
still active especially for rubber-like or elasto-plastic materials.
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An Example for Rubber-like Material

Material: neo-Hookean hyperelastic, v;,; = 0.49

Pressure Pressure

+9.047e+10 +1.058e+10
+1.000e+10 +1.000e+10
+8.917e+09 +8.917e+09
+7.833e+09 +7.833e+09
+6.750e+ +6.750e+09
+5.667e+09
+4.583e+09
+3.500e+09
+2.417e+09
+1.333e+09
+2.500e+08
-8.333e+08

-1.917e+09

-3.000e+09

# of Nodes is
pst the same.

1st order hybrid T4 (C3D4H) 2" order modified hybrid T10 (C3D10MH)

v" No shear/volumetric locking v~ No shear/volumetric locking
X Pressure oscillation X Low interpolation accuracy
X Corner locking X Early convergence failure
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An Example for Rubber-like Material

Material: neo-Hookean hyperelastic, v;,; = 0.49

Pressure
[ 1.0e+10

=5.76+9

E1 se+9
-3.0e+09

# of Nodes is
exactly the same
as the C3D4H case.

Selective ES/NS-FEM-T4

Selective ES/INS-FEM-T4 is not bad
as ABAQUS C3D4H.
Yet, it still has major issues...

v" No shear/volumetric locking
X Pressure oscillation
X Corner locking
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Objective

Propose a new type of S-FEM,
F-barES-FEM-T4,

to resolve the pressure oscillation
and the corner locking issues
In hyperelastic and elastoplastic materials.

Table of Body Contents

> Methods: Quick introduction of F-barES-FEM-T4
> Results: A few example analyses
> Summary
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Methods

Quick introduction of F-barES-FEM-T4
(F-barES-FEM-T3 in 2D is explained for simplicity.)

ICCM2016

P. 6



Quick Review of Node-based S-FEM (NS-FEM)

For triangular (T3)
or tetrahedral (T4)
elements.

Algorithm:

1. Calculate the deformation gradient at each element, Bl¢mF,
as usual.

2. Distribute "'*™F s to the connecting nodes
with area weights to make N°9eF at each node.

3. Use NodeF s tg calculate the stress, nodal force and so on.

NS-FEM avoids shear & volumetric locking in T3/T4 elements
and also alleviates pressure oscillation.
Yet, it suffers from spurious low-energy modes,
corner locking and minor pressure oscillation....
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Quick Review of Edge-based S-FEM (ES-FEM)

For triangular (T3)
or tetrahedral (T4)
elements.

Algorithm:

1. Calculate the deformation gradient at each element, ™M F,
as usual.

2. Distribute "'*™F s to the connecting edges
with area weights to make F98¢F at each edge.

3. Use Ed8¢F s to calculate the stress, nodal force and so on.

ES-FEM avoids shear locking in T3/T4 elements.
Yet, it suffers from volumetric locking, corner locking,
and major pressure oscillation...

ICCM2016

P.8




Quick Introduction of F-barES-FEM

Concept: combine ES-FEM and NS-FEM using F-bar method
Qutlline

Use Use
2 adjacent some neighbo
elements to elements to ~-¢

calculate calculate
FiSO T

N/
F

m EdeeFiso s given by ES-FEM.

B Edge ] s given by cyclically applied NS-FEM.

m FdgeF is calculated in the manner of F-bar method:
Edgef — Edge71/3 Edgeﬁiso_
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Outline of F-barES-FEM

Brief Formulation |
A kind of
1. Calculate E'*™] as usual. ow-pass fier
or J
2. Smooth E'*M] at nodes and get Node T -
- - yclic
3. Smooth Node T at elements and get Fle™ T . Smoothing
. of J
4. Repeat 2. and 3. as necessary (c times).
i (c layers of ~) B
5. Smooth El*M 7 at edges to make Edge ]

Combine EdgeT and EdgeFiso of ES-FEM as
EdgeF Edge ]1/3 EdgeFlso

Hereafter, F-barES-FEM-T4 with ¢ cycles of smoothing
Is called “F-barES-FEM-T4(c)".
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~Additional Point of F-barES-FEM

Typical Flow of FE Solver

Displace- : Deformation — Cauchy : Internal
deformation : constitutive domain
ment . Gradient Stress | . : Force
evaluation F model T Integration (Finty

B Selective ES/NS-FEM

splits T into T?9 and T9€Y

and merges {fyq} and {fgey} into {f ™™}
B F-barES-FEM

builds F¥°! and F's° separately
and combines FV°' and F's° into F.

F-barES-FEM can handle
any kind of material constitutive model.
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Results
A few example analyses
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Compression of Rubber Block

Qutline
Pressure
Load
1m
Arruda-Boyce
u,=0 u,=0 - Hyperelastic
— Material

y | x\Afo

B Arruda-Boyce hyperelastic material (v, = 0.499).
B Applying pressure on % of the top face.
B Compared to ABAQUS C3D4H with the same
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Compression of Rubber Block

Pressure Distribution
Early stage Middle stage Later stage

ABAQUS
C3D4H

Pressure (Pa) Pressure (Pa) Pressure (Pa)

-5.0c+08 o} Ho+8 To+?  1.40+09

[Nl \\\|“
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Compression of Rubber Block

Pressure Distribution
Early stage Middle stage Later stage

Pressure (Pci) Pressure (Pa) Pressura (Pa)

Ho+8 To+?  1.40+09

-5.0c+08 [|]‘ iy “

F-bar
ES-FEM-
T4(3)

F-barES-FEM-T4 resolves the pressure oscillation issue!

So+8

-5.0c+08 a | } ‘W‘c#} 1.4o+09
ammy i Y
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__Barreling of 1/8 Rubber' Cylinder

Qutline

im
Enforced
Displacement

2m

Perfectly
# Constrained

Uy =ty =u; =0

B Neo-Hookean hyperelastlc material (vi,; = 0.499).
B Enforced displacement is applied to the top surface.

B Compared to ABAQUS C3D4H with the same
unstructured T4 mesh.
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Barreling of 1/8 Rubber Cylinder

Resuw Pressure (Pa)

Of F‘ba" -3.0e+08 +1 £e+09
ES-FEM(2)

(Pressure)

50% nominal
compression

Almost smooth
pressure
distribution
IS obtained
except just
around the rim.
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Barreling of 1/8 Rubber Cylinder

Pressure Distribution

Strange deformjﬂ)n (corner locking) around the rim

s, Pressure Pressure (Pa) \
% EEEEHB

%i Eriant M m __;::

2R | F _ r

ABAQUS s | ba
ES-FEM-
C3D4H i
______ T 4 ( 2)

F-barES-FEM-T4 with a sufficient cyclic smoothing
resolves the corner locking issue!

Fressure (Fa)

5555555555555

eeeeeeeeeeee
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Shearing & Tensioning of Elasto-Plastic Bar

1.2 k nodes & 4.8 k elems.

Qutline

| Enforced
TN 7D|splacement

2m

“A'm

Elasto-plastic material:
® Hencky elasticity with E = 1 GPa and v = 0.3.
® |sotropic von Mises yield criterion with

oy = 1 MPaand H = 0.1 GPa (constant).

M Blue face is perfectly constrained.
B Red face Is constrained in plane and pressed down.

B Compared to ABAQUS C3D4H with the same
unstructured T4 mesh.
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Shearing & Tensioning of Elasto-Plastic Bar

Result Equivalent_Plastic_Strain
of F-bar |;1 .9e+00
ES-FEM 1.5
(Equiv. ;

Plastic ]

Strain) 0.5

0.0e+00
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Shearing & Tensioning of Elasto-Plastic Bar

Equivalent Plastic Strain

Equivalent_Plastic_Strain
I4.7689-O1

-0.3576

102384
0.1192

IO.OOOe+OO

++++++++++

‘Equivalent_Plastic_Strain
I 1.137e+00

-0.8524
+0.5683

IO.2841
0.000e+00

ABAQUS C3D4H

F-barES-FEM-T4
e [ EEAS ICCM2016
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Shearing & Tensioning of Elasto-Plastic Bar
Equivalent Plastic Strain

PEEQ
+2.605e+00
+2.3B8e+00
+2.170e+00
+1.953e+00
+1.7306e+00
+1.519+00
+1,302e+00
+1.085e+00
+8.682e-01
+6.511e-01
+4.341e-01
+2.170e-01

+0.000e+00

Equivalent_Plastic_Strain
I2.6OSe+OO

-1.9534

- 1.3023
0.6511

IO.OOOe+OO

u, = 2.0m

F-barES-FEM-T4 ABAQUS C3D4H

Accuracy of equivalent plastic strain seems
no much different.
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Shearing & Tensioning of Elasto-Plastic Bar
Pressure

Pressure
3.233e+07

-2.3e+7

[ 1.de+7
4.9e+6

I;42éde+06

Pressure
0 4.736e+07

-3e+7
15047

+1.746e+07
+1.248e+07
+7.500e+

-2.465e+H

-7.443e10b
-1.243e407
-3.048e+07

IO
-1.243e+07

F-barES-FEM-T4

B 2L ICCM2016
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Shearing & Tensioning of Elasto-Plastic Bar
Pressure

Pressure
I 4.603e+07

sure
+1.254e+68
+4.603e+67
+3.850e+07
+3.096e+87
+2.343e+67

—2.3e+7 +1.590e+07

0
-2.3e+7
-4.436e+07

'3 683e+07
-1.436e:167
-7.29%+87

u, =2.0m

F-barES-FEM-T4 ABAQUS C3D4H

F-barES-FEM-T4 is pressure oscillation free
In elastoplastic analysis.
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Twist of Rubber/Aluminium Composite Plate
Qutline Enf(_)rced Twisting 3 k nodes & 14 k elems.

Displacemen @
Wb ‘e -
BB HHNN N o [Aluminium]
EDEDEIEN JEDEIEDE ECIEDENE KREDEIEN SEDEIEIE . .
SEPSIPIEPSIDS, EESHSUSIS) RESS Hencky elasticity:
[Rubber] Rubber | boci i Al E=7y0 - 4
Neo-Hook BRI SR S _ ’
Hyperelasticity: Ell il b | eomopievon Mises
S . asticity:
= O 49 EDEBCIEN JEDEIEDE EUCEDENE KREDEIEN SEDEIEIE p y
A b oo oy = 100 MPa
...... B G 158 B
Lddatlze  #= 0700 Gonst
3m B

B Bottom face is perfectly constrained.

B Top face is constrained in the plane
and twisted 360 deg. around the vertical axis.

B Calculated by F-barES-FEM-T4 only. (Just a demo.)

H I\/IuIt|Ie Fs at edges on the material interface.
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Twist of Rubber/Aluminium Composite Plate

Result of Equivalent_Plastic_Strain
F.bar E7 . 89'0 ]
ES-FEM-T4 0.6
Equivalent 0.4
Plastic

Strain 0.2

0.0e+00
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Twist of Rubber/Aluminium Composite Plate

Result of Pressure (Pa)

F‘bar 9.0e108
ESFEM.TS 2

Ac+8

Pressure
0

Ae+8
592108

No
pressure
oscillation.
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Twist of Rubber/Aluminium Composite Plate

Result of Deformation_Gradient F_yz
F-bar t4. 2e-01
ES-FEM-T4 0.2
Deformation

Gradient

Fy,

Discontinuous F,, .
()
No strain smoothing
across
material interfaces.

B 2L ICCM2016
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Summary
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Benefits and Drawbacks of F-barES-FEM-T4
Benefits
v" Locking-free with 15t order tetra meshes.
No difficulty in severe strain or contact analysis.

v No increase in DOF.
Purely displacement-based formulation.

v No restriction of material constitutive model.
Pressure dependent models are acceptable.

v' Less corner locking and pressure oscillation.

Drawbacks

X The more cyclic smoothing necessitates

the more CPU time due to the wider bandwidth.
Slower than Selective ES/NS-FEM...
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FYI

If you are interested in F-barES-FEM-T4,
please refer to the following paper:

“F-bar aided edge-based smoothed finite element method using
tetrahedral elements for finite deformation analysis of nearly
Incompressible solids, International Journal for Numerical
Methods in Engineering (IJNME), Jul. 2016.

| Thank you for your kind attention!
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