A Brief Introduction to Smoothed Finite Element Method (S-FEM)

Yuki ONISHI (Tokyo Institute of Technology)

Quick Review of S-FEM

What is S-FEM?

- Smoothed finite element method (S-FEM) is a relatively new FE formulation proposed in 2006.
- S-FEM is one of the gradient (strain) smoothing techniques.
- There are many kinds of S-FEMs depending on the scheme of smoothing.
- There are a few <u>classical</u> S-FEMs depending on the smoothing domain.
- For example, in a 2D triangular mesh:

Each colored area shows the domain for gradient smoothing.

GACM-JSCES2023

Tokyo Tech

e.g.) Brief of ES-FEM

Let us consider a mesh with only two 3-node triangular cells.

- Calculate [B] (= dN/dx) at each cell as usual.
- Distribute each [B] to the connecting edge with an area weight and build [EdgeB].
- Calculate strain (ε), Cauchy stress (σ) and nodal internal force { f^{int} } in each edge smoothing domain with [$^{\text{Edge}}B$].

What are the major benefits of S-FEM?

- Super-linear mesh convergence rate with T4 mesh. (Almost same rate as 2nd-order elements with T4 mesh.)
- 2. Shear locking free with ES-FEM-T4. (Good accuracy with T4 mesh in solid mechanics.)
- **3. Volumetric locking free with NS-FEM-T4.** (Key technique for rubber-like nearly incompressible solid.)
- **4. Little accuracy loss with skewed meshes.** (No problem with complex geometry or severe deformation.)
- 5. No increase in DOF.

(Purely displacement-based formulation.)

6. Easy to code.

(keeping away from mixed variational formulations.)

S-FEM is a powerful method suitable for practical industrial applications.

T4: 4-node Tetrahedra

How popular is S-FEM?

Number of journal papers whose **title** contains "smoothed finite element":

inquired at Google Scholar

Tokyo Tech

The attraction of S-FEM is expanding continuously.

P. 6 GACM-JSCES2023

Applications of S-FEM-T4 in Our Lab

Large deformation solid mechanics (still in academic research)

Motivation & Objective of Our Latest Study

Motivation

What we want to do:

- Solve severe large deformation analyses accurately and robustly.
- Treat complex geometries with tetrahedral meshes.

- Consider nearly incompressible materials ($\nu \simeq 0.5$).
- Support **contact** problems.
- Handle **auto re-meshing**.

Issues in Conventional FE (ABAQUS)

Our Approach using S-FEM

Tokyo Institute of Technolog

GACM-JSCES2023

Birth of a New-generation S-FEM, EC-SSE, in 2022

EC-SSE is an excellent formulation for compressible solids; but when $\nu \simeq 0.5$, EC-SSE has **volumetric locking** and **pressure checkerboarding**.

Therefore, EC-SSE is NOT directly applicable to nearly incompressible solids.

GACM-JSCES2023

Tokyo Tech

Objective

<u>Objective</u>

Develop a new S-FEM formulation to extend EC-SSE to nearly incompressible large deformation analysis

<u>Strategy</u>

Use the selective reduced integration (SRI)

- ➤ Use EC-SSE for the deviatoric part,
- Use NS-FEM for the volumetric part, and
- > Combine them with SRI.

EC-SSE-SRI

Method Introduction to ES-FEM, NS-FEM, EC-SSE, and EC-SSE-SRI

Brief of ES-FEM

Let us consider a mesh with only two 3-node triangular cells.

- Calculate [B] (= dN/dx) at each cell as usual.
- Distribute each [B] to the connecting edge with an area weight and build [EdgeB].
- Calculate deformation gradient (F), Cauchy stress (σ) and nodal internal force {f^{int}} in each edge smoothing domain with [^{Edge}B].

Brief of NS-FEM

Let us consider a mesh with only four 3-node triangular cells.

- Calculate [B] (= dN/dx) at each cell as usual.
- Distribute each [B] to the connecting node with an area weight and build [NodeB].
- Calculate deformation gradient (F), Cauchy stress (σ) and nodal internal force {f^{int}} in each nodal smoothing domain with [^{Node}B].

Brief of EC-SSE

- Make $\begin{bmatrix} Edge B \end{bmatrix}$ s in the same procedure as ES-FEM.
- Consider each [^{Edge}B] is the value at the center of each edge, and <u>assume [B] is linearly distributed in each cell</u>.
- Make three $\begin{bmatrix} Gaus B \end{bmatrix}$ s in each cell as the extrapolation of the three $\begin{bmatrix} Edge B \end{bmatrix}$ s.
- Calculate $^{\text{Gaus}}\varepsilon$, $^{\text{Gaus}}\sigma$ and $\{f^{\text{int}}\}$ using each $\begin{bmatrix} ^{\text{Gaus}}B \end{bmatrix}$ in the same manner as the 2nd -order element.

Conducting strain smoothing twice, the strain/stress are evaluated at each Gauss point.

Strain distribution is <u>piecewise-linear in each cell</u> and is <u>continuing at every edge center</u>.

GACM-JSCES2023

No shear locking with T3/T4 mesh.

- Fast mesh convergence rate in strain/stress as an 2nd –order element.
- Cannot avoid volumetric locking and pressure checkerboarding

Brief of EC-SSE-SRI (Our Latest Method)

Brief of EC-SSE-SRI-T4 (in 3D)

[Deviatoric Part]

- Make $\begin{bmatrix} Edge B \end{bmatrix}$ s in the same procedure as ES-FEM.
- Make [Face B] s by re-smoothing three [Edge B] s per face.
- Consider each [^{Face}B] is the value at the center of each face, and <u>assume [B]</u> is linearly distributed in each cell.

- Make four [Gaus B] s in each cell as the extrapolation of the four [Face B] s.
- Calculate $^{\text{Gaus}}\varepsilon_{\text{dev}}$, $^{\text{Gaus}}\sigma_{\text{dev}}$ and $\{f_{\text{dev}}^{\text{int}}\}$ using each [$^{\text{Gaus}}B$], like the 2nd -order element.

GACM-JSCES2023

[Volumetric Part]

• Make $\begin{bmatrix} Node B \end{bmatrix}$ s in the same procedure as NS-FEM.

■ Calculate ^{Node} ε_{vol} , ^{Node} σ_{hyd} and $\{f_{vol}^{int}\}$ using each [^{Node}B].

[SRI]

• Make
$$\{f^{\text{int}}\} = \{f^{\text{int}}_{\text{dev}}\} + \{f^{\text{int}}_{\text{vol}}\}.$$

Let me explain with text only

Result & Discussion

Demonstration of EC-SSE-SRI-T4 in 3D and Evaluation of CPU Cost

Static Implicit Bending of Rubber Cantilever

- $\blacksquare 10 \times 1 \times 1 \text{ m cantilever.}$
- Dead load applied to the tip node.
- Neo-Hookean hyperelastic material, $E_{ini} = 6$ GPa, $v_{ini} = 0.49$.
- A large deflection analysis with $u_z = -6.5$ m at the final state.
- Compared the results of **ABAQUS C3D4** and **EC-SSE-SRI-T4**.

Static **Bending of Rubber Cantilever** Implicit

Tokyo Institute of Technology

GACM-JSCES2023

Static **Bending of Rubber Cantilever** Implicit

Tokyo Institute of Technology

GACM-JSCES2023

Static
ImplicitPressuring of Rubber Block

■ 1 x 1 x 1 m block.

- Arruda-Boyce hyperelastic material, $E_{ini} = 24$ GPa, $v_{ini} = 0.49$.
- Applying pressure on ¼ of the top face with lateral confinement.
- Evaluated the result of EC-SSE-SRI-T4.

Static Implicit Pressuring of Rubber Block

Results of EC-SSE-SRI-T4

Static
ImplicitBarreling of Rubber Cylinder

- 1 m cylinder in radius and height.
- Neo-Hookean hyperelastic material, $E_{ini} = 6$ GPa, $v_{ini} = 0.49$.
- Applying enforced compression displacement on the top face with lateral confinement.
- Evaluated the result of EC-SSE-SRI-T4.

Static Implicit Barreling of Rubber Cylinder

Static
ImplicitTensioning of Rubber-Filler Composite

- **Rubber:** Neo-Hookean hyperelastic material ($E_{ini} = 6 \text{ GPa}, \nu_{ini} = 0.49$)
- Iron Filler: Neo-Hookean hyperelastic material ($E_{ini} = 260 \text{ GPa}, \nu_{ini} = 0.3$)
- Applying enforced tensioning displacement on the top face with lateral confinement.
- Evaluated the result of EC-SSE-SRI-T4.

P. 28 GACM-JSCES2023

Static **Tensioning of Rubber-Filler Composite** Implicit

<u>Results of</u> **EC-SSE** -SRI-T4

Convergence failure at 221% stretch \therefore sufficiently robust in large deformation Stress

Mises

NZ

No issue in \checkmark Mises stress.

 \geq Minor pressure oscillation only in rubber part.

Within acceptable range, I think.

Discussion on CPU Time of EC-SSE-SRI-T4

- Since the most of CPU time for implicit analyses is spent solving the stiffness equation (i.e., [K]{u} = {f}), the size of [K] matrix (N) directly affects the CPU time.
- EC-SSE-SRI-T4 is a purely displacement-based FE formulation; thus, the matrix size (N) is exactly identical to that of FEM-T4.
- EC-SSE-SRI-T4 conducts strain smoothing across FE cells; thus, the matrix bandwidth of [K] is x6.7 wider than that of FEM-T4.

Formulation	Bandwidth of [K]	v.s. FEM-T4 Ratio
FEM-T4	14 nodes x 3 DOF	1
FEM-T10	28 nodes x 3DOF	2.0
ES-FEM-T4	45 nodes x 3 DOF	3.2
NS-FEM-T4	60 nodes x 3 DOF	4.3
EC-SSE-T4, EC-SSE-T4-SRI	94 nodes x 3DOF	6.7

Therefore, as for calculation speed, EC-SSE-SRI-T4 is about x6.7 slower than FEM-T4.

P. 30 GACM-JSCES2023

Discussion on CPU Time of EC-SSE-SRI-T4

- Meanwhile, we should remind that
 - FEM-T4 cannot avoid volumetric locking and pressure checkerboarding,
 - FEM-T10 cannot have large deformation robustness (<u>short-lasting</u>), no matter how fine the mesh is.
- Therefore, I believe, EC-SSE-T4-SRI is practically acceptable and worth using, even though the CPU time is 6.7 times longer than FEM-T4. What do you think?

Summary

Summary

- Smoothed finite element methods (S-FEMs) with T4 mesh are quite useful for practical complex geometry problems in various applications, including large deformation analyses.
- EC-SSE-T4 is excellent for compressible solids, and is opening the door of "S-FEM 2.0".
- **EC-SSE-SRI-T4** is recommended for nearly incompressible solids.
- The EC-SSE family would be the standard T4 formulation in the near future.
 Take home message:
 - Why not S-FEM? It is supremely useful and easy to code!

Thank you for your kind attention!

Appendix

Why not T10 but T4?

It is because T10 mesh is NOT good for the representation of complex geometries.

For example, surface mesh around a small hole looks like...

Also, the presence of mid-nodes leads to early convergence failure in large deformation. Then, T4 is preferable.

P. 35

GACM-JSCES2023

Tokyo Tech

