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Motivation and Background
Motivation

We want to solve severely large
deformation problems e f )

250nm

accurately and stably! 150nm
(Target: automobile tire, thermal nanoimprint, etc.)

Background

Finite elements are distorted
In a short time, thereby resulting
In convergence failure.

Mesh rezoning method (h-adaptive
mesh-to-mesh solution mapping)
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|ssues

The biggest iIssue
in large deformation mesh rezoning

It Is Impossible to remesh arbitrary deformed 2D or 3D
domains with quadrilateral or hexahedral elements.

o 'r 7 Ives

| We have to use triangular or tetrahedral elements...

However, the standard (constant strain) triangular or
tetrahedral elements induce shear and volumetric

locking easily, which leads to inaccurate results.
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Conventional Methods

B Higher order elements:
X Not volumetric-locking-free; Not effective
In large deformation due to intermediate nodes.

B EAS elements:
X Unstable.

B B-bar, F-bar and selective integration elements:
X Not applicable to triangular/tetrahedral.

B F-bar patch elements:
X Difficult to construct patches

B u/p hybrid elements
X No sufficient formulation for triangular/tetrahedral is
presented so far. (There are almost acceptable hybrid
elements such as C3D4H of ABAQUS.)

B Selective smoothed finite elements:

? Unknown potential. Let’s try!
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Objective

Develop a locking-free
modified selective S-FEM

for large deformation problems
with mesh rezoning

Table of Body Contents

- Part 1: Introduction of our modified selective S-FEM
without mesh rezoning

- Part 2: Introduction of our modified selective S-FEM
with mesh rezoning

- Summary
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Part 1:

Introduction of Our Modified selective S-FEM
without Mesh Rezoning
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Review of Edge-based S-FEM (ES-FEM)

B Calculate [B] at element as usual.

B Distribute [B] to the connecting edges and make [ E48¢p].

B F, Tetc and {f "} are calculated on smoothed edge domains.
Generally accurate but induces volumetric locking.

Substituting "face" for "edge" {finf}
gives FS-FEM for 3D
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Review of Node-based S-FEM (NS-FEM)

B Calculate [B] at element as usual.

B Distribute [B] to the connecting nodes and make [ NodepB]
B F, Tetc and {f "} are calculated on smoothed node domains.

Generally not accurate but volumetric locking free.
(due to zero-energy modes,

4
which are arisen in 4,,////% >
f.”’g%
;ﬁ?tgceelcelrlrr\];erl%éaatllson %'% ’//% .: close to FVM with

f//’ vertex-based control volume

U /ﬁ 1
hour-glass modes) :{/(//////////
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Review of Selective ES/NS-FEM

B Separate stress into "u part" and "A part”, where u and A are
the Lame's parameters.

B F T etc and {f "} are calculated on both smoothed domains.
Only applicable to elastic constitutive models.

E 4
/f 5 7 %’”4’3
[ |
Edge Node -
Substituting [ i = [ ‘ B
"“face" Edge Edge Node Node
e T T
"e_dge" Edge ¢int Node gint
gives [T u) Mo ™
FS/NS-FEM _ TN~—— |
for 3D {flnt} {flnt} {flnt}
'ES-FEM [lSelective ES/NS-FEM Il NS-FEM |
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Our Modified Selective ES/NS-FEM

B Separate stress into "deviatoric part" and "hydrostatic part"
Instead of "u part" and "4 part".

B F T etc and {f "} are calculated on both smoothed domains.
Applicable to any kind of material constitutive models.

4

-y e
| ¥8 .
/ - [-I “ Z [
Edge % Nodé -
Substituting [ ; B [ ‘ B
"f "’ = c ode ode
o e T Node T,y = Node
"edge" Edge *int Node tt
gives {  f _dev] { f “hyd}
FSINS-FEM T~~~ —
for 3D {fint} {fint} {fint}

'ES-FEM llSelective ES/NS-FEM Bl NS-FEM
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Bending of Cantilever

Qutline
. 10m
/ 1m
1m Neo-Hookean Hyperelastic Material
//
TZ. '20 KN Force
X
B Neo-Hookean material
_ Dev(B)
T] =2Cy +_U—1)[1]
J D,

with a constant C;,(=1 GPa) and various D;S.

B Compared to ABAQUS/Standard with C3D20H
(2nd-order hybrid hexahedral) elements.

N No mesh rezoning Is taken place for this test.
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Verification of Our Selective S-FEM
Results with D, = 2 x 1071% [Pa~1] (v;,;=0.499999)

The amount of
vertical deflection

IS about
6.5 m.
Mises Stress (Pa)

e If we use
poais constant strain
foe+8 tetrahedral,
|¥%_é4e+8 the amount of
Ese+8 vertical deflection
E?:: is about only

0.1 m.
0
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Verification of Qur Selective S-FEM

Comparison to 2"9-order Hybrid Hex Element

—s— Qur Selective FS/NS-FEM-T4 Method
—e— ABAQUS/Standard with C3D20H
-6.35 r I 1 1 -0.5

640 M _— S SR |08
6.50 | T 42
655/ / |15
6.60 s

-6.65 -2.0

Relative Error [%]

Vertical Displacement, u, [m]

Initial Poisson’s Ratio, vi,

} Our selective S-FEM is free from shear locking!! |
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Partial Compression of Block
Qutline

Pressure
up to 3 GPa

Arruda-Boyce
u,=0 u,=0 - Hyperelastic

v Material
1
yvj/x\/'&ufo

B Arruda-Boyce Hyper elastic Material with v;,; =
0.4999

B Applying pressure on % of the top face
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- Partial Compression of Block

Result Mises Stress (Pa)

O—f le+Q

w | P [ P | | oo o O] [ | ﬂ
Our | |
- 0 2e+09
method
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Partial Compression of Block

Vertical Displacements vs. Applied Pressure

0
0.1 |
_02 L
0.3 |
_04 .
05 |
0.6 |
0.7 |
0.9 |

-1

— Qur Selective FS/NS-FEM-T4
==== ABAQUS/Standard with C3D4
----- ABAQUS/Standard with C3D4H
--------- ABAQUS/Standard with C3D8
ABAQUS/Standard with C3D8H

---—-_---
|

Vertical Displacement, u, [m]

"?—m': T

0 05 ﬁ 15 2 25 3
Applied Pressure, p [GPa]
B Constant strain element (C3D4) locks quickly.

B Other elements including our method do not lock.

H Result of our method is almost identical to that of C3D4H.
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Compression of 1/8 Cylinder

Qutline ) R

Enforced
Displacement

2m

i Perfectly
7 Gonstrained
; _.',.'ux - uy = MZ = O

B 50% axial compressio'n.'.'

B Neo Hookean hyper elastic material of C;, = 40 x 10° Pa,
D=5x10"1Pa"t (i.e., v;p; = 0.4999).

B Compared to C3D4H element of ABAQUS/Standard with

exactly same mesh.
H HR ¥R COMPSAFE2014
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Compression of 1/8 Cylinder

Mises Stress (Pa)

Result

O_f IHIll]ersllllllll%erSl“
our 0 2 5e+08
method
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Compression of 1/8 Cylinder
Comparison to ABAQUS

C3D4H ~ . Our Selective
of ABAQUS/Standard FS/NS-FEM-T4

Pressure (Pa)
1.36e+10-

; ] 1.2e+10
-1.33%e+05

Co
®
+
0

s

[0}
+
0

o

DB |ab-1odb  Abagqus/Standard 6123 WertFeldoils 19:02 ST 2014

Y Step: Step-1
In

wcrement 100 Step Time = 100.0

-4.39e+00 M -48+9

B Deformation i1s almost the same each other.
B Pressure oscillation i1s about double in our result.
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Part 2:

Introduction of Our Modified selective S-FEM
with Mesh Rezoning
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Procedure of Mesh Rezoning

Time: | Time: | Time
1:n-l : 1:n : t +1
e e > - --
| % % % I

|
: .
| |
| |
| |
| |
| |
| |
: ]cext _ ]cint fext + fint fext _ fint :

Solve Remesh Resolve Solve
Equilibrium & Equilibrium Equilibrium

Map States

The way of mapping varies with the material constitutive model.
 (e.g. Elasto-plastic models necessitate some kind of correction.) |
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Mapping of Stress/Strain States

For Elastic or Hyperelastic Materials
e, [T] = [T(FD]

B Map initial position {xinitial} at nodes, and then
remake deformation gradient [F| at edges & nodes.

Each node preserve its initial position
so that the domain can spring back to
the Initial shape after unloading.
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Mapping of Stress/Strain States

For Elasto-Plastic Material in Total Strain Form

= [T([F] €ply H(epl))

B Map in|t|aI posmon {x‘mt‘al} at nodes, and then
remake deformation gradient [F] at edges & nodes.

B Map history dependent variables, plastic strain [E},]
and equivalent plastic strain ep).

B Correct ey, to satisfy Equ([T]) = H(ep)

H(e,)

correct
Equ(T)
= Mises Stress

pl
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Twist and Stretch of Hyperelastic Body

Enforced Displacement

Neo-Hookean
Hyperelastic —_|
Body T

B Static, 1 mx2mx4m

B Neo-Hookean hyperelastic body of
C,o = 1 GPa and D; = 400 GPa™! (v, = 0.48)

B Twist up to 360 deg. = Stretch up to 100% nominal strain
= Twist back = Shrink back

B Our selective FS/NS-FEM with tetrahedral elements

B Global mesh rezoning every 90 deg. and 50% stretch/shrink
COMPSAFE2014
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Twist and Stretch of Hyperelastic Body

Our selective Our selective
FS/NS-FEM FS/INS-FEM
with without
mesh rezoning mesh rezoning

Mises Stress (Pa)
QE+Q
=—8e+9

—66+9
=
—4de+9

E28+9

0
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Twist and Stretch of Hyperelastic Body
Residual Displacement

Displacement Magnitude (m)

EDDDS

—0.0004
—0.0003
0.0002
It
spring 0.0001
backed
almost
perfectly.
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Shearing and Necking of 3D Plastic Rod
Qutline ,W%

im

| Hency’s
Plasticity Material
/ under Isotropic
von Mises

Criterion

7
5

B Static, 3D

B Hencky's Plasticity Material
with von Mises yield criterion and isotropic hardening.
(same as 2D case)

COMPSAFEZ2014




Shearing and Necking of 3D Plastic Rod

Equivalent Plastic Strain
3D Result E'00e+00

=5.00e+00
-4.00e+00
~3.00e+00
-2.00e+00
E 1.00e+00

0.00e+00

The deformation
seems
to be valid.

After 2.8 m disp.,
mesh rezoning
error
occurred.
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Shearing and Necking of 2D Plastic Bar
2D
Result

Equivalent_Plastic_Strain
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Tension of 2D Filler Particle Composite

1m (Neo-Hookean
Hyperelastic;
Soft)

Outline | e

Enforced
Displacement

of \‘\:.‘" R T

r
=

Filler Particle
N\ (Neo-Hookean
Hyperelastic;
Hard)

B Plane-strain static

B Neo-Hookean Hyperelastic
® Filler: hard rubber (EMitial = 100 GPa, vititial= (9 49)
® Matrix: soft rubber (Enitial = 1 Gpg, yinitial =  49)

m E R COMPSAFE2014
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Tension of 2D Filler Particle Composite
2D Result

Mises Stress (Pa)
2.50e+09 5.00e+09 7.50e+09
“ | | I e A e Yl il | | e T | O ot e ‘
0.00e+00 9.00e+09

The deformation seems to be valid.
After 1.8 m disp.,

analysis Is stopped due to mesh rezonlng error.
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Summary
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Take-Home Messages

. Our modified selective S-FEM with triangular or
tetrahedral elements is locking free and very easy
to Implement.

. The accuracy of our method is almost the same as
C3D4H of ABAQUS, which is one of the current
best hybrid elements.

. Our S-FEM goes well together with mesh rezoning.
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Summary and Future Work

Summary

® A new static-implicit mesh rezoning method for severely
large deformation analysis is proposed.

® |t adopts our modified selective S-FEM, which separates
stress into deviatoric part and hydrostatic part.

® |ts accuracy are verified with hyperelastic material and
elasto-plastic material.

Future Work

® Explicit dynamic simulation for safety engineering
(e.g., car crash simulation)

® Local mesh rezoning
® Apply to contact forming, crack propagation, etc.

Thank you for your kind attention.

| appreciate your question in slow and easy English!!
COMPSAFE2014
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