担当体積に平滑化を施した 10節点四面体平滑化有限要素による 微圧縮大変形解析

<u>大西 有希</u> 東京工業大学

<u>実現したい内容</u>:

- ■<u>「超」大変形問題</u>を高精度か1 ロバストに解きたい.
- <u>複雑形状</u>を<mark>四面体</mark>で解きたい.
- <u>微圧縮性が現れる材料</u>も解きたい.
- <u>自動リメッシング</u>も実現した<u>い</u>.

■<u>接触</u>も扱いたい.

研究目的

10節点四面体を用いたS-FEM定式化群 「SelectiveCS-FEM-T10s」について 最も精度と安定性に優れる定式化を探る.

- 去年までのSelectiveCS-FEM-T10定式化概要
- 現状最善のSelectiveCS-FEM-T10定式化概要
- 解析例
- まとめ

去年までの SelectiveCS-FEM-T10 定式化概要

CMD2019 P. 6 ____

■ 各要素の[B]を通常のFEMと同様に計算する.

「「」

- 要素の[B]を周囲のエッジに要素体積を重みとして配り、 エッジで平均化して[^{Edge}B]を作る.
- エッジの平滑化領域の量として歪み、応力、節点内力を計算 する.

★ 東京工業大学 Tokyo Institute of Technology

現状最善の SelectiveCS-FEM-T10 定式化概要

(1) T10要素のT4サブ要素への分割

■ ES-FEMと同じ要領で偏差歪みの平滑化をエッジで行う.
■ 偏差応力の評価を各エッジで行う. <u>ES-FEM⁻¹は無し.</u>

(3) 要素内歪み平滑(体積歪み成分)

■ 全サブ要素の体積歪みの平均を要素全体の体積歪みとする (8節点六面体SRI要素と同じ発想).

(4) 選択的低減積分(SRI)で合算

- 1. 要素中心に追加していたダミー節点を無くした.
 - サブ要素数およびエッジ数が減少.
 - 要素が非対称に.
- 2. ES-FEMの後に行っていたES-FEM⁻¹を無くした.
 - 偏差歪み・偏差応力の評価点がエッジに.
 - 輪郭エッジには歪み平滑化がかからなくなった.

要素の対称性が無くなることや 輪郭エッジの歪み平滑が無くなることは 直感的には改悪だと思われる. しかし,実装してみると新定式化の方が高性能. 原因究明は今後の課題.

- Enforce axial displacement on the top face.
- Neo-Hookean body with $v_{ini} = 0.49$.
- Compare results with ABAQUS T10 hybrid elements (C3D10H, C3D10MH, C3D10HS) using the same mesh.

Comparison of Mises stress at 24% comp.

All results are similar to each other except around the rim having stress singularity.

CMD2019 P. 21

ΤΠΚ

Comparison of pressure at 24% comp.

All results are similar to each other except around the rim having stress singularity.

CMD2019 P. 22

ΤΟΚ

Pursuing Excellence

Comparison of nodal reaction force at 24% comp.

New SelectiveABAQUSABAQUSABAQUSCS-FEM-T10C3D10HC3D10MHC3D10HS

ABAQUS C3D10H and C3D10HS suffer from nodal force oscillation.

- Applying pressure on ¼ of the top face.
- Compared to ABAQUS C3D10MH with the same unstruct ured T10 mesh.

Misess stress dist. at 0.7 GPa pressre

Less smoothed Mises stress is observed in New SelectiveCS-FEM-T10. Further improvement is still required.

SelectiveCS-FEM-T10のまとめ

<u>利点</u>

- ✓ 高精度 (ロッキング・圧力チェッカーボード・反力振動無し)
- ✓ ロバスト(超大変形でも長持ち)
- ✓ 追加自由度無し(静的縮約が不要)
- ✓ 標準的なT10要素とメモリ消費や計算時間が同じ
- ✓ 商用有限要素解析コードに実装可能

<u>欠点</u>

極めて実用に近い!!

- XもはやT4要素ではない
- × 超大変形時にMises応力の振動がみられる

<u>Take-home message</u>

皆様がお持ちのFEコードへの実装を是非ご検討ください. コーディングは簡単・コストは従来通り・精度と耐久性良し!!

ご清聴ありがとう御座いました

Bending of Hyperelastic Cantilever

<u>Outline</u>

- Neo-Hookean hyperelastic material
- Initial Poisson's ratio: $v_0 = 0.49$
- Compared to ABAQUS C3D10MH (modified hybrid T10 el ement) with the same mesh.

Bending of Hyperelastic Cantilever

Comparison of the deflection disp. at the final state

No volumetric locking is observed.

Bending of Hyperelastic Cantilever

Comparison of the pressure dist. at the final state

Pursuing Excellence