4D Flow血流速測定に基づく CFD血流解析システム (その1:手法と検証)

東京工業大学 大西 有希, <u>青木 康平</u>, 天谷 賢治,

(株)アールテック 清水 利恭,

名古屋大学 礒田 治夫,

浜松医科大学 竹原 康雄,

(株)アールテック 小杉 隆司.

バイオエンジニアリング講演会2013 P. 1

はしめに 脳動脈瘤の破裂危険性などを定量的に 評価する診断手法として「患者固有CFD 血流解析」の実現が期待されている.

<u>CFD血流解析の三大要件</u>

- 1. 血液粘性モデルの設定
- 2. 血管形状の抽出
- 3. 流入出境界条件の決定

いずれが不正確でも - CFD血流解析は 実用たり得ない

しかし, 既存手法(超音波, 2D cine PC-MR)では <mark>血流速や血流量</mark>を正確に同定することは難しい.

近年, 血管内部の血流速分布の時刻歴を測定できる3D cine PC-MR (4D Flow)が開発された.

<u>研究目的:</u> 4D Flowを用いることにより, <u>正確な</u>患者固有CFD 血流解析が実施できるシステムを開発する.

ただし、血流動態は人体各部で様子が異なるため、

本発表では脳動脈瘤に絞って話を進める.

バイオエンジニアリング講演会2013

■その1(本発表)

- ●CFD血流解析の三大要件
 - 1. 血液粘性モデルの設定
 - 2. 血管形状の抽出
 - 3. 流入出境界条件の設定

駆け足で 結果のみ 紹介

← 本研究最大の特徴 なので詳しく紹介

■その2(次の発表)

- ●システム構成とデータフローについて
- ●画像処理ソフトでの処理について

ベイオエンジニアリング講演会2013

P. 4

基本的なCFD解析条件の設定

メッシュ作成条件

使用ソフトウェア	GAMBIT (ANSYS)
境界層メッシュ初期厚さ	0.03[mm]
境界層メッシュ成長率	1.2
境界層メッシュ数	4
境界層メッシュタイプ	三角柱
(境界層厚さ)	0.161[mm]
その他メッシュ寸法	0.1[mm]
その他メッシュタイプ	四面体

CFD解析条件

東京工業大学

Tokyo Institute of Technology

使用ソフトウェア	CFX(ANSYS)
解析タイプ	非定常 (逐次定常解析でも可)
時間刻み幅	0.01[s]
収束判定値	10-5(最大值)

值点

生成されたメッシュ

1. 血液粘性モデルの設定

バイオエンジニアリング講演会2013 P. 6

名古屋大学

NAGOYA UNIVERSITY

血液の流体粘性モデル

ク講演会2013

- •Newtonian model $\mu = 0.00345 [Pa \cdot s]$
- •Non-Newtonian model (Carreau model) $\mu = \mu_{\infty} + (\mu_0 - \mu_{\infty}) \left[1 + (\lambda \dot{\gamma})^2 \right]^{\frac{n-1}{2}}$ $\begin{pmatrix} \lambda = 3.313 [s], n = 0.3568, \\ \mu_0 = 0.056 [Pa \cdot s], \\ \mu_{\infty} = 0.00345 [Pa \cdot s] \end{pmatrix}$

0.01 Newtonian Carreau 0.01 0.01 0.01 0.01 0.01 0.1 1 10 100 1000 10000 Strain Rate (1/s)

各モデルの剪断速度と粘性係数の関係

各モデルの剪断速度と剪断応力の関係

公医科大学

R'Tech

脳動脈瘤に対する非定常解析 にてCFD解析結果を比較

名古

検証結果(WSS分布)

脳動脈瘤のWSSを評価する場合において, 血液の非ニュートン性の影響は小さい.

バイオエンジニアリング講演会2013 P. 8

2. 血管形状の抽出

バイオエンジニアリング講演会2013 P. 9

名古屋大学

NAGOYA UNIVERSITY

MRによる形状測定の精度検証実験

<u>今回検討する測定法</u>

- 1. 非造影4D Flow(PC-MRA)
- 2. 造影MRA(CE-MRA)

<u>検証内容</u>

東京工業大学

Tokyo Institute of Technology

₥

- 上記2つの形状測定法について精度検証を行う.
- 測定物は<u>内径4mmの直円管</u>

検証結果(抽出された形状)

PC-MRA(4D Flow)

·撮影画像

•抽出形状

·抽出形状

造影剤を用いないPC-MRA:凸凹だらけの形状 造影剤を用いたCE-MRA:スムーズな形状

東京

Tokyo Institute of Technology

名古屋大学

NAGOYA UNIVERSITY

脳動脈瘤のWSSを評価する場合において,

NAGOYA UNIVERSITY

- 造影剤なしのPC-MRAでは、現状、コントラストが足りない、
- ・ 造影剤ありのCE-MRAなら差当り許容できる精度で形状が 抽出できる。

バイオエンジニアリング講演会2013

P. 12

R'Tech

浜松医科大学

東京工業大字

Tokyo Institute of Technology

烜

本日の主題 3. 流入出境界条件の設定

・バオエンジニアリング講演会2013 P. 13

▲ 浜松医科大学 HAMAMATSJ UNIVERSITY SCHOOL OF MEDICINE

<u>流入出境界条件決定法の現状</u>

- ●標準的とされる流量を与える
 ●WSSが標準的な値となるような流量を与える
 ●上記流量をWomersly流速プロファイルで与える
 → 物理的根拠に乏しい
- **〔●**2D cine PC-MRで**測定**した断面流速分布を与える → <mark>測定誤差が大き過ぎる</mark>

対象血管内部の血流速分布の時刻歴を測定できる3D cine PC-MR (4D Flow)を用いて流入出境界条件を与え る.

イオエンジニアリンク講演会201

■ x,y,z成分全てで平均値ほぼゼロの正規分布をしている

■ 分散は相当大きい(*σ* = 98.3 mm/s)

4D Flowの流速ベクトルの生データは信用できないが, 統計的な平均値(断面流量など)はある程度信頼できる.

ベイオエンジニアリング講演会2013 P. 15

<u>決定手順(1)断面流量の推定</u> 【ポイント】

- ●血液は非圧縮性流体とみなせる
- ●血流量に対して血管の膨張・収縮体積は充分小さい

 Q_2

 Q_3

🙏 浜松医科大学

VFR (Q) is constant.

 \mathcal{Q}_{5}

R'Tech

⇒ <u>血管分岐が無い限り、流量はあらゆる断面で等しい</u>

東京工業大学 這一 名古屋大学

- ●BC面近傍に多数の仮想断面を作成
- ●各仮想断面の断面流量 Q_k ($k = 1 \sim N$)を計算
- ・ e^{Q_k} の平均 \overline{Q} (= $\sum_{k=1}^N Q_k$)を計算する

<u>大数の法則より,Nを大きくすればQは真値に収束</u>

<u>決定手順(1) 断面流量の推定</u> 【推定方法の続き】

 ● 全流入出境界の流量の和がゼロとなるよう *Q*に対して最小ノルム補正を行う.

【スムージング手法】

●移動最小二乗法(MLS)を使用

名古屋大学

NAGOYA UNIVERSITY

・イオエンジニアリング講演会2013 P. 18

<u>決定手順(3) 流速分布の流量補正</u> 【ポイント】

- ●手順(1)より, 正確な流量が決定
- ●手順(2)より,およそのスムーズな流速分布が決定
- ⇒

 スムーズな流速分布の流量を正確な流量に一致させる

検証実験(装置)

実際は層流であるが、まるで乱流に見える程 大きな測定誤差を含んでいる.

バイオエンジニアリング講演会2013 P. 21

名古屋大学

NAGOYA UNIVERSITY

	正解流量 [mm³/s]	推定流量 [mm ³ /s]	誤差
直管	1150.1	1130.3	1.7%
曲がり管	1150.3	1182.0	2.8%

<u>誤差3%以下で流量が推定できた</u>

・、イオエンジニアリング講演会2013 P. 22 _____

検証実験(断面流速の比較)

検証実験(断面流速の比較)

バイオエンジニアリング講演会2013 P. 25

名古屋大学 NAGOYA UNIVERSITY

まとめ

3D cine PC-MR(4D Flow)を利用した<u>正確な</u>患者固有 CFD血流解析システムを開発した.

- ◆ 4D Flowにより正確な流入出境界条件を決定できる.
- ◆ 血液の非ニュートン性は考慮するに越したことはないが、 ニュートン流体で解析したとしてもその誤差は比較的小さい.
- ◆ 造影剤を使わない限り形状抽出の精度は未だ充分ではなく, 非造影時の形状抽出誤差が相当大きい.
 (現状最大の問題!!)
- ◆ 流体構造連成解析の必要性は別途検討が必要.

次の講演にて、システムの具体的なデータフロー について発表します.

・イオエンジニアリンク講演会2013

P. 26

R'Tech

松医科大学

バイオエンジニアリング講演会2013 P. 27

名古屋大学

NAGOYA UNIVERSITY

A

<u>Phase Contrast (PC) cine MRの原理</u>

■Phase Contrast法

■ cine MR法

東京工業大学 Telve lestitute of Technology のAct 屋大学 NAGOYA UNIVERSITY

心電図同期により心周期の様々な時間に複数の画像 を収集し、心周期の各ポイントの画像を得る手法

ドイオエンジニアリング講演会2013

28

🔍 浜松医科大学

R'Tech

<u>2次元シネ位相コントラス磁気共鳴法</u> (2D cine PC MR)

マグニチュード画像

X方向にエンコード ■ した位相画像

Y方向にエンコード した位相画像

名古屋大学

NAGOYA UNIVERSITY

バイオエンジニアリング講演会2013 P. 29

◎ 浜松医科大学 HAMAMATSU UNIVERSITY SCHOOL OF MEDICINE

<u>3次元シネ位相コントラスト磁気共鳴法</u> (3D cine PC MR = 4D Flow)

バイオエンジニアリング講演会2013

P. 30

Æ

松医科大学

名古屋フ

NAGOYA UNIVERS

M. Markl et al. JMRI, (2003)

R'Tech

東京

Tokyo Institute of Technology

- 撮像シークエンスはradiofrequency-spoiled gradient-echoが基本
- 3軸全てに速度エンコード(時間軸と合わせて4次元データ)
- Segmented k-spaceでデータ収集
- 心電図に同期させてデータ収集
- 時間分解能は 4*4*TR

Scanar	GEHC Signa HDxt 3.0T
Coil	8ch Headcoil
Repetition Time (TR)	4.9[ms]
Echo Time (TE)	2.2[ms]
Flip Angle (FA)	1.5[deg]
Band Width (BW)	62.5[kHz/Pixel]
Number of Excitations (NEX)	1
Field of View (FOV)	180 x 180 [mm ²]
Matrix Size	160 x 160
In-plane ZIP	512
Slab Thickness	33 [mm]
Number of Slices	34
Slice ZIP	2
Reconstructed Voxel Size	0.352 x 0.352 x 0.485 [mm^3]
Velocity Encoding (VENC)	1.0 [m/s]
Slew Rate (SR)	150 [mT/m/ms]

バイオエンジニアリング講演会2013 P. 32

我々の推奨するメッシュ

左図の3倍のノード数を持つメッシュ

浜松医科大学

R'Tech

脳動脈瘤のWSSをANSYS CFX (Node-Centered Control Volume FVM)で評価する場合, 本例題で100万ノード, 400万セルが最低必要.

バイオエンジニアリング講演会2013

P. 33

一般的な脳動脈瘤の場合,

●Reynolds数は500程度

- ⇒ 円管の臨界レイノルズ数(約2000)を大きく 下回っているので, 流れは層流である.
- ●Womersley数は2程度 ⇒ 逐次定常とみなせる範囲(Womersley数が 1以下)を<u>わずかに</u>超えた拍動流である.

そこで・・・

実際に「非定常解析」と「逐次定常解析」を行い, どの程度の違いが出るかを確認する

バイオエンジニアリング講演会2013 P 31

R:代表長さ(直円管の半径など)

品,名古屋大学

- **ω**: 拍動の角周波数
- ρ:流体の密度
- μ:流体の粘性係数

α>10:逐次定常とみなせない

R'Tech

脳動脈瘤の場合

R=1.5mm, ω=2πとすると・・・

アリング講演会2013

$$\alpha = R \cdot \sqrt{\frac{\omega \rho}{\mu}} = (1.5 \times 10^{-3}) \times \sqrt{\frac{2\pi \times 1054}{3.84 \times 10^{-3}}} \approx 1.97 \quad (>1)$$

バオエンジニ

逐次定常とみなせる領域からはわずかにずれている.

35

【逐次定常解析】

- ●各Time-Stepにおける定常解析の重ね合わせ.
- ●ナビエ ストークス方程式の時間項を無視.
- ●非定常解析より計算時間が短い.

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla)\mathbf{v} = -\frac{1}{\rho}\nabla p + \nu\nabla^2 \mathbf{v}$$

ベイオエンジニアリング講演会2013 36

【直円管(直径3mm)の理論解での比較】

<u>脳動脈瘤CFD血流解析でのWSS比較</u>

非定常解析($\Delta t = 0.01 \text{ s}$)

逐次定常解析

脳動脈瘤のWSSを評価する場合において, 非定常解析でも逐次定常解析でも大差はない.

・バイオエンジニアリング講演会2013 P. 38

【計算時間の比較】

	直円管	脳動脈瘤	タイムス
メッシュ数	2,128,374	2,904,789	テップ数
	計算時間	計算時間	
非定常解析	6時間45分	13時間23分	201
逐次定常解析	2時間41分	8時間05分	20

(TSUBAME, 並列数12)

R'Tech

以上の結果から,逐次定常解析により (非定常解析より短い時間で) 十分妥当な近似解が得られることが分かった.

バイオエンジニアリング講演会2013

松医科大学

名古屋大学

■ Δt = 0.01 s で, 正解とほとんど同じ解(流速の RMSEが0.001 m/s以下)が得られる.

、イオエンジニアリング講演会2013

P. 40

Rurach

4D-Flow測定誤差評価実験(装置)

■二重円筒から成る<u>回転式ファントム</u>

■40wt%グリセリン水溶液(造影剤なし)

- ■GEHC Signa HDxt 3.0T + 8ch Brain Array
- ■内側円筒容器を剛体回転 ⇒ 流体も剛体回転

バイオエンジニアリング講演会2013 P. 41

<u>4D-Flow測定誤差評価実験(結果)</u> ある水平断面上の流速分布

回転速度が0 rpmの場合

回転速度が360 rpmの場合

爲 浜松医科大学

R'Tech

■流れのおよその分布は測定出来ている ■明らかに不正な流速点が多数存在する ■ランダム誤差が含まれているように見える

・イオエンジニアリング講演会2013

P. 42

<u>11断面流量の内訳の一例</u>

断面番号	断面流量 [mm³/s]
断面1	1090
断面2	1141
断面3	1155
断面4	1107
断面5	1117
断面6	1163
断面7	1226
断面8	1150
断面9	1221
断面10	1310
断面11	1324

・イオエンジニアリング講演会2013

P. 43

平均值:1182.2 mm³/s, 標準偏差:75.1 mm³/s 正解值:1150.3 mm³/s, 推定誤差:2.8 %

NAGOYA UNIVERSITY

這 而 名古屋大学

^{国立大≇法人} 浜松医科大学

R'Tech

東京工業

Tokvo Institute of Technology

<u>右脳底動脈上小脳(BA-SCA)動脈瘤</u>

- ■一般的な流入量は3000±600 mm^3/sで標準偏差が 平均値の20%と大きい.
- ■多数の流出血管があり、それらの統計的な流量は明らかではない。

正確な患者固有CFD血流解析のためには 全流入出血管の流量測定は不可避である。 対象血管領域全体の流速分布を比較的高速に 測定できる4D Flow測定を利用するのが 最も適した方法である

ベイオエンジニアリング講演会2013 P. 44

