A Meshfree Approach for Large Deformation Analysis in Thermal Nanoimprint

Yuki ONISHI and Kenji AMAYA Tokyo Institute of Technology

Background

- Thermal nanoimprinting and micro hot embossing have been in industrialization stage.
- Effective method for process design (temperature, pressure, time, etc.) is required. <u>Current situation</u>
 - Repetitive experiments for process optimization.
 - Repetitive experiments cost high!!
 - •Numerical simulation should help.

Final Goal

Establishment of numerical technique for thermal nanoimprint process optimization.

Choice of Numerical Method

Choice1: Continuum or Molecular

- If the target size is over several tens of nms, the number of molecules is large enough to be modeled as a continuum.
- The problem is huge for MD.

■ <u>Choise2: Solid or Fluid</u>

- In thermal imprints, temperature is around Tg at most.
- Rheology effect can be consolidated in viscoelastic model.

■ <u>Choise3: Meshfree</u> or <u>Mesh</u>

- "Mesh"(=FEM) is usually used and has achievements.
- "Meshfree"(=SPH, EFGM, etc.) is expected to be a good method to treat extremely large deformation, but still under development and yet has no achievements.
- Most of the researches use FEM.

Our Previous Work (Outline)

Finite element Analysis

 Geometric nonlinear (Large deformation)

 Material nonlinear (thermo-viscoelastic) (thermo-viscoelastic polymer)

- Contact nonlinear
- Quasi-static analysis

FE analyses agreed with experiments in case of line-and-space up to AR=1

Mold

(rigid)

Onishi et al., JVST B (2008) etc.

Our Previous Work (Viscoelastic)

Generalized Maxwell Model

When a forced displacement $x(t)=\sin(\omega t)$ applied at the temperature θ , reaction force f(t) become $f(t) = G'(\omega, \theta) \sin(\omega t) + G''(\omega, \theta) \cos(\omega t)$

 G_{inf} : Long-term shear modulus $G_0=G_{inf}+\sum G_i$: Instantaneous shear Modulus $\tau_1 \sim \tau_n$: Relaxation time

G' : Shear storage modulus (same phase) G'' : Shear loss modulus (90° shifted)

Our Previous Work (Material Test)

Uniaxial tension-compression tests at various temperatures and frequencies

device:01dB-METRAVIB VA2000 frequency range:0.001~200(Hz) load range: ±100(N) temperature range:-150~450(degC)

Our Previous Work (Example2)

Our Previous Work (Example2)

90sec

120sec

ASNIL2010 8

Our Previous Work (Example1)

Our Previous Work (Example2)

Simulated deformations of the line-and-space imprinting agreed with experiments.

Our Previous Work (Summary)

- Time evolutional deformation behavior was successfully simulated with FEM in cases of line-and-space patterning.
- The thermo-viscoelastic constitutive model we chose was appropriate.
- It has potential to simulate any deformation in thermal nanoimprintings.

Objective

Our previous work hit the wall...

In practical applications,
 AR over 1 is not uncommon.
 (even AR>3 is usual.)

FEM cannot treat the extremely large deformation without adaptive meshing. (Adaptive meshing is difficult to implement.)

Objective

Development of a <u>meshfree</u> method for viscoelastic large deformation analysis

(utilize it for thermal nanoimprint process optimization in the future)

Difference between FEM and Meshfree

Way of domain integration

•FEM (element base)

Difference between FEM and Meshfree

■ Way of domain integration

- Meshfree (collocation type) ---- SPH
- Meshfree (Petrov-Galerkin type) ---- MLPG
- Meshfree (Galerkin type) ---- EFGM
 - background cell integration
 - nodal integration
 - stress point integration (SPI)

(No standard formulation of SPI)
*No element
*Less locking
*Fair integration accuracy
*Requirement of stabilization

ASNIL2010 14

close to FEM

Update of SP States

 $[\text{note}] \ \ ^{I}\boldsymbol{x}: \text{location of SP}, \ \ _{J}\boldsymbol{x}: \text{location of node}$

Location

$${}^{I}\!\boldsymbol{x}^{\mathrm{trial}} \longleftarrow {}^{I}\!\boldsymbol{x} + \sum_{J \in {}^{I}\!\mathbb{S}} {}^{I}\!\phi_{J} \left({}_{J}\!\boldsymbol{x}^{\mathrm{trial}} - {}_{J}\!\boldsymbol{x}
ight)$$

x: current location, S: set of nodes in the support,*φ*: shape function

■ Volume

$$^{I}V^{\text{trial}} \longleftarrow {}^{I}V^{\text{initial}}\det({}^{I}F^{\text{trial}})$$

V^{initial}: initial volume, F: deformation gradient

Viscoelastic Material Properties material constants used in example analysis instantaneous Young's modulus (E_0) : 9 GPa instantaneous Poisson's ratio (v_0) : 0.333 · · · instantaneous shear modulus (G_0) : 3.375 GPa behavior at bulk modulus(K): 9 GPa room temperature dimensionless shear modulus (g): 0.9 relaxation time (τ) : 5 s behavior long-term Young's modulus (E_{∞}) : 1 GPa around Tg long-term Poission's ratio (v_{∞}): 0.481 long-term shear modulus(G_{∞}): 0.3375 GPa

Bending of Cantilever

- Static/Quasi-static, Plane strain
- 50x5 structured grid nodes
- Concentrated force at right-top node
- Compared to FEM(ABAQUS/Standard) with same node arrangements and selective reduced integration quadrangle elements

Bending of Cantilever (elastic) E=1GPa, v=0.49

ABAQUS/Standard Proposed Method ■ Less than 1% error of displacement

No problem in elastic large deflection analysis

ASNIL2010 19

Bending of Cantilever (viscoelastic)

 E_0 =9GPa, v_0 =0.333, E_{inf} =1GPa, v_{inf} =0.481

ABAQUS/Standard

Proposed Method

ASNIL2010 P.20

Bending of Cantilever (viscoelastic)

■ 2.5% error of displacement

- Error decreases as dt decreases
- Further improvement of time-advancing scheme is necessary

Imprinting-like Analysis

Quasi-static, plane strain

- Horizontal bounding for left and right side
- Vertical bounding for bottom side
- Enforced displacement for right half of top side toward downward with horizontal bounding
- Unstructured grid with fineness and coarseness

ASNIL2010 22

Imprinting-like Analysis (FEM)

Inappropriate deformation because of the locking under the corner

東京工業大学 Tokyo Institute of Technology ASNIL2010 P.23

Imprinting-like Analysis (FEM)

ASNIL2010 24

Imprinting-like Analysis (animation)

An appropriate result was obtained.

ASNIL2010 P.25

Summary & Future Work

Summary

- A Meshfree formulation of large deformation of viscoelastic body was proposed.
- It has fair accuracy in <u>large deflation analysis</u>.
- Appropriate result is obtained in <u>imprinting-like analysis.</u>
- Further modification is required to apply it to thermal nanoimprint simulation.

Future work

- Improvement of time advancing scheme
- Verification with experiments or FEM with adaptive meshing
- Insertion of additional nodes and SPs during analysis
- Contact analysis
- Cooling and demolding analysis

Appendix

ASNIL2010 27

SP Integration (initialization)

(currently) SPs are generated from FE meshes [Note] meshes are only for initialization!!!

Locate every SP in the middle edges

(Belytschko's SP integration has master and slave SPs.)

Corresponding SP volume is calculated with meshes

■ : node

 (has only *x* and *u*)
 : stress point (SP)
 (has *x*, *T*, *E*, *E*^v, etc.)

Integration Correction

Integration constraint

 $\sum_{I \in J^{S}} \nabla^{I} \phi_{J}{}^{I} V = \mathbf{0} \qquad \text{(for } J \text{ in interior nodes)},$

 $\sum_{I \in J^{S}} \nabla^{I} \phi_{J}{}^{I} V = {}_{J} \boldsymbol{n}_{J} A \quad \text{(for } J \text{ in exterior nodes)}.$

n: outward normal unit vector, *A*: correspoiding nodal area *J*S: set of SPs that include node *J* in the support

Integration correction (IC) ${}^{I}\tilde{\psi} = \begin{bmatrix} 1 + {}^{I}\gamma_{1} & 0 \\ 0 & 1 + {}^{I}\gamma_{2} \end{bmatrix} \nabla^{I}\phi_{J}$

determine γ s so that modified ψ s satisfy reproducing constraints including integration constraint

Quasi-implicit Time Advancing

Start of time increment loop

Typical fully-implicit time advancing

Start of Newton-Raphson loop

•update support, w, ϕ , etc.

 \diamond calc $f^{\text{int.}}$ and K

$$\diamond$$
 calc $r = f^{\text{int.}} - f^{\text{ext.}}$

 \bullet solve *K* $\delta u = r$

•update node locations

- update SP locations
- End of Newton-Raphson loop

End of time increment loop

	田口 羊大之
	ホ小エホハナ
۱.	
	Tokyo Institute of Technology

FEM

- Integration points are pseudo-Lagrange points.
- Elements must be convex.
- •1st order triangular element has volumetric locking.

Meshfree with BG cells

- Integration points are Euler points.
- Difficulties in treating free surfaces.
- Difficulties in convection of state quantities.

Meshfree without cells

- Integration points are Lagrange points.
- Difficulties in precise domain integration.

Shear Behavior of Polymer

Generalized Maxwell Model

When a forced displacement $x(t)=\sin(\omega t)$ applied at the temperature θ , reaction force f(t) become $f(t) = G'(\omega, \theta) \sin(\omega t)$ $+ G''(\omega, \theta) \cos(\omega t)$

 G_{inf} : Long-term shear modulus $G_0=G_{inf}+\sum G_i$: Instantaneous shear Modulus $\tau_1 \sim \tau_n$: Relaxation time

G' : Shear storage modulus (same phase) G'' : Shear loss modulus (90° shifted)

Constitutive Equation of Polymer

Constitutive equation

1)Volumetric Behavior

 $[P] = -KE_{\rm vol}[I]$

2)Shear Behavior
$$[S] = 2G_0 \left([E'] - \sum_{i=1}^n g_i [E'_v]_i \right)$$

[P] : hydrostatic stress tensorK : bulk modulusEvol: volumetric strain[I]: identity tensor

[S]: deviatoric stress tensor
G0: instantaneous shear modulus (=Ginf +G1+ ... + Gn)
[E']: deviatoric strain tensor
gi: ith dimensionless shear modulus (=Gi/G0)
[Ev']i: ith viscous strain tensor

Combining [P] and [S], We obtain stress tensor [T] as:

$$| = -[P] + [S] = KE_{vol}[I] + 2G_0\left([E'] - \sum_{i=1}^n g_i[E'_v]_i\right)$$

T

Temperature Dependency of Polymer

■WLF law (temperature-time conversion)

θref, C1, C2: material constants

Patch Test

node
stress point (SP)

Elastic body, Static, Plane-strain
 Irregularly-arranged nodes and SPs
 Displacement BC for every external nodes
 $u(x) = \begin{cases} 0.1 + 0.2x_1 - 0.1x_2\\ 0.2 - 0.1x_1 + 0.2x_2 \end{cases}$

Patch Test (animation)

Patch Test (result)

within 1% error of Mises stressProposed method passes the patch test

